Vertex Algebras

  • M. Schottenloher
Part of the Lecture Notes in Physics book series (LNP, volume 759)


Central Charge Vertex Operator Operator Product Expansion Formal Distribution Vertex Operator Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BD04*]
    A. Beilinson and V. Drinfeld. Chiral Algebras. AMS Colloquium Publications 51, AMS, Providence, RI, 2004.Google Scholar
  2. [BF01*]
    D. Ben-Zvi and E. Frenkel. Vertex Algebras and Algebraic Curves. AMS, Providence, RI, 2001.zbMATHGoogle Scholar
  3. [Bor86*]
    R.E. Borcherds. Vertex algebras, Kac-Moody algebra and the monster. Proc. Natl. Acad. Sci. USA 83 (1986), 3068–3071.CrossRefADSMathSciNetGoogle Scholar
  4. [Bor00*]
    R.E. Borcherds, Quantum vertex algebras. In: Taniguchi Conference on Mathematics Nara ’98. Advanced Studies in Pure Mathematics 31, 51–74. Math. Soc. Japan, 2000.Google Scholar
  5. [FKRW95*]
    E. Frenkel, V. Kac, A. Radul, and W. Wang. W1+∞ and W(gl_N) with central charge N. Commun. Math. Phys. 170 (1995), 337–357.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [FLM88*]
    I. Frenkel, J. Lepowsky, and A. Meurman. Vertex Operator Algebras and the Monster. Academic Press, New York, 1988.zbMATHGoogle Scholar
  7. [HN91]
    J. Hilgert and K.-H. Neeb. Lie Gruppen und Lie Algebren. Vieweg, Braunschweig, 1991.zbMATHGoogle Scholar
  8. [Hua97*]
    Y-Z. Huang. Two-Dimensional Conformal Geometry and Vertex Operator Algebras. Progress in Mathematics 148, Birkhuser, Basel, 1997.Google Scholar
  9. [Kac98*]
    V. Kac. Vertex Algebras for Beginners. University Lecture Series 10, AMS, Providencs, RI, 2nd ed., 1998.Google Scholar
  10. [Len07*]
    S. Lentner. Vertex Algebras Constructed from Hopf Algebra Structures. Diplomarbeit, LMU München, 2007.Google Scholar
  11. [Lin04*]
    K. Linde. Global vertex operators on Riemann surfaces. Dissertation. LMU München, 2004.Google Scholar
  12. [Seg88a]
    G. Segal. The definition of conformal field theory. Unpublished Manuscript, 1988. Reprinted in Topology, Geometry and Quantum Field Theory, U. Tillmann (Ed.), 432–574, Cambridge University Press, Cambridge, 2004.Google Scholar
  13. G. Segal. Geometric aspects of quantum field theory. Proc. Intern. Congress Kyoto 1990, Math. Soc. Japan, 1387–1396, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Schottenloher
    • 1
  1. 1.Ludwig-Maximilians-Universitä München80333 MünchenGermany

Personalised recommendations