Skip to main content

Constitutive Equations

  • Chapter
Chemical Reactor Modeling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albråten PJ (1982) The Dynamics of Two-Phase Flow. PhD thesis, Chalmers University of Technology, Göteborg, Sweden

    Google Scholar 

  2. Antal SP, Lahey RT Jr, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiphase Flow 17(5):635-652

    Article  MATH  Google Scholar 

  3. Arnold GS (1988) Entropy and objectivity as constraints upon constitutive equations for two-fluid modeling of multiphase flow. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York

    Google Scholar 

  4. Arpaci VS, Larsen PS (1984) Convection heat Transfer. Prentice-Hall, Inc, New Jersey

    Google Scholar 

  5. Arpaci VS, Kao S-H, Selamet A (1999) Introduction to heat transfer. Prentice Hall, Upper Saddle River

    Google Scholar 

  6. Astarita G, Savage DW, Biso A (1983) Gas Treating with Chemical Solvents. Wiley, New York

    Google Scholar 

  7. Auton TR (1983) The Dynamics of Bubbles, Drops and Particles in Motion in Liquids. PhD Thesis, University of Cambridge, Cambridge, UK

    Google Scholar 

  8. Auton TR, Hunt JCR, Prud’Homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241-257

    Article  MATH  MathSciNet  Google Scholar 

  9. Baehr HD, Stephan Karl (1998) Heat and Mass Transfer. Springer-Verlag, Berlin

    MATH  Google Scholar 

  10. Basset AB (1888) A Treatise on Hydrodynamics Vol I. Deighton, Bell and Co, London:George Bell and sons, Cambridge Republicated: Dover Publications, Inc, Vol II, New York (1961)

    Google Scholar 

  11. Batchelor GK (1983) An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  12. Beckermann C, Viskanta R (1993) Mathematical modeling of transport phenomena during alloy solidification. Appl Mech Rev 46(1):1-27

    Article  MathSciNet  Google Scholar 

  13. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. John Wiley & Sons, New York

    Google Scholar 

  14. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Volume 1, Fluid mechanics. John Wiley & Sons, New York

    Google Scholar 

  15. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Second Edition, John Wiley & Sons, New York

    Google Scholar 

  16. Bourè JA, Delhaye JM (1982) General Equations and Two-Phase Flow Modeling. In: Hetsroni G (ed) Handbook of Multiphase Systems, Section 1.2, pp. (1-36) - (1-95), McGraw-Hill, New York

    Google Scholar 

  17. Boussinesq J (1877) Essai sur la thèorie des eaux courants. Mèm près par div savants à l’Acad Sci, Paris 23(1):1-680

    Google Scholar 

  18. Boussinesq J (1885) Sur ls résistance qu’oppose un liquide indéfini en repos, sans pesanteur, au mouvement varié d’une sphére solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et asez faibles pour que leurs carrés et produits soient négligeables. C R Acad Sci Paris 100:935-937

    Google Scholar 

  19. Cai X, Wallis GB (1994) A more general cell model for added mass in two-phase flow. Chem Eng Sci 49(10):1631-1638

    Article  Google Scholar 

  20. Chilton TH, Colburn AP (1934) Mass Transfer (Absorption) Coefficients. Ind Eng Chem 26(11):1183-1187

    Article  Google Scholar 

  21. Chisnell RF (1987) The unsteady motion of a drop moving vertically under gravity. J Fluid Mech 176:443-464

    Article  MATH  Google Scholar 

  22. Clift R, Grace JR, Weber ME (1978) Bubble, Drops, and Particles. Academic Press, New York

    Google Scholar 

  23. Colburn AP, Drew TB (1937) The Condensation of Mixed Vapors. Trans AIChE 33:197-215

    Google Scholar 

  24. Cook TH, Harlow FH (1986) Vortices in bubbly two-phase flow. Int J Multiphase Flow 12(1):35-61, 1986.

    Article  Google Scholar 

  25. Crank J (1957) The Mathematics of Diffusion. Oxford University Press, Glascow

    Google Scholar 

  26. Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton.

    Google Scholar 

  27. Cussler EL (1997) Diffusion: Mass Transfer in Fluid Systems. Second Edition, Cambridge University Press, Cambridge

    Google Scholar 

  28. Danckwerts PV (1950) Unsteady-state diffusion or heat conduction with moving boundary. Trans Faraday Soc 46(9):701-712

    Article  MathSciNet  Google Scholar 

  29. Danckwerts PV (1951) Significance of Liquid-Film Coefficients in Gas Absorption. Ind & Eng Chem 43(6):1460-1467

    Article  Google Scholar 

  30. Dandy DS, Dwyer HA (1990) A sphere in shear flow at finite Reynolds number: Effect of shear on particle lift, drag, and heat transfer. Journal of Fluid Mechanics 216:381-410

    Article  Google Scholar 

  31. Drew DA, Lahey RT Jr (1979) Application of general constitutive principles to the derivation of multidimensional two-phase flow equations. Int J Multiphase Flow. 5:243-264

    Article  MATH  Google Scholar 

  32. Drew DA (1983) Mathematical Modeling of Two-Phase Flow. Ann Rev Fluid Mech 15:261-291

    Article  Google Scholar 

  33. Drew DA, Lahey RT Jr (1987) The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int J Multiphase Flow 13 (1):113-121

    Article  MATH  Google Scholar 

  34. Drew DA, Lahey RT Jr (1990) Some supplemental analysis concerning the virtual mass and lift force on a sphere in a rotating and straining flow. Int J Multiphase Flow 16:1127-1130

    Article  Google Scholar 

  35. Drew DA (1992) Analytical Modeling of Multiphase Flows: Modern Developments and Advances. In: Lahey RT jr (ed) Boiling Heat Transfer, pp. 31-83, Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  36. Drew DA, Lahey RT Jr (1993) Analytical Modeling of Multiphase Flow. In: Roco MC (ed) Particulate Two-Phase Flow, Chapt. 16, pp. 509-566, Butterworth-Heinemann, Boston

    Google Scholar 

  37. Drew DA, Wallis GB (1994) Fundamentals of Two-Phase Flow Modeling. Multiphase Science and Technology 8:1-67

    Google Scholar 

  38. Dybkjær I (1995) Tubular reforming and autothermal reforming of natural gas - an overview of available processes. Fuel Proc Techn 42:42-107

    Google Scholar 

  39. Eckert ERG, Drake RM (1987) Analysis of Heat and Mass Transfer. Hemisphere, New York

    Google Scholar 

  40. Elghobashi SE, Abou-Arab TW (1983) A two-equation turbulence model for two-phase flows. Phys Fluids 26(4):931-938.

    Article  MATH  Google Scholar 

  41. Elghobashi SE, Truesdell GC (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys Fluids A5 (7):1790-1801

    Google Scholar 

  42. Elghobashi SE (1994) On predicting particle laden turbulent flows. Appl Sci Res 52:309-329.

    Article  Google Scholar 

  43. Esmaeeli A, Ervin E, Tryggvason G (1994) Numerical simulations of rising bubbles. In: Blake JR, Boulton-Stone JM, Thomas NH (eds) Bubble Dynamics and Interfacial Phenomena. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  44. Esmaeeli A, Tryggvason G (1996) An Inverse Energy Cascade in Two-Dimensional Low Reynolds Number Bubbly Flows. J Fluid Mech 314:315-330

    Article  MATH  Google Scholar 

  45. Fan F-S, Tsuchiya K (1990) Bubble Wake Dynamics in Liquids and Solid-Liquid Suspensions. Butterworth-Heinemann, Boston

    Google Scholar 

  46. Fick A (1855) Ueber Diffusion. Ann der Physik 94:59-86

    Google Scholar 

  47. Scott Fogler H (2006) Elements of Chemical Reaction Engineering. Fourth Edition, Prentice-Hall International, Inc, New Jersey

    Google Scholar 

  48. Fourier JB (1822) Théorie analytique de la chaleur. Chez Firmin Didot, père et fils, Paris

    Google Scholar 

  49. Friberg PC (1998) Three-dimensional modelling and simulation of gas/liquid flow processes in bioreactors. Dr. Ing. Thesis, Høgskolen i Telemark (HIT), Norwegian University of Science and Technology, Prosgrunn

    Google Scholar 

  50. Frössling N (1938) Über die Verdunstung fallender Tropfen. Gerlands Beitr Geophys 52:170-216

    Google Scholar 

  51. Geurst JA (1985) Virtual Mass in Two-Phase Bubbly Flow. Physica 129A:233-261

    Google Scholar 

  52. Gidaspow D (1994) Multiphase Flow and Fluidization-Continuum and Kinetic Theory Descriptions. Academic Press, Harcourt Brace & Company, Publishers, Boston

    MATH  Google Scholar 

  53. Grace JR, Wairegi T, Nguyen TH (1976) Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Transactions of the Institution of Chemical Engineers 54:167-173

    Google Scholar 

  54. Grace JR, Weber ME (1982) Hydrodynamics of drops and bubbles. In: Hetsroni G (ed) Handbook of Multiphase Systems, Chap 1.3.9 pp 1-204-1-223 McGraw-Hill Book Company

    Google Scholar 

  55. Hadamard JS (1911) mouvement permanent lent d’une sphére liquide et visqueuse dans un liquide visqueux. C R Acad Sci 152:1735-1738

    MATH  Google Scholar 

  56. Hagen KD (2000) Heat Trandfer with Applications. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  57. Higbie R (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans AIChE 31:365-389

    Google Scholar 

  58. Hines AL, Maddox RN (1985) Mass Transfer Fundamentals and Applications. Prentice Hall PTR, New Jersey

    Google Scholar 

  59. Hinze JO (1975) Turbulence. Second Edition, McGraw-Hill, New York

    Google Scholar 

  60. Incropera FP, DeWitt DP (2002) Fundamentals of Heat and Mass Transfer. Fifth Edition, John Wiley & Son, New York

    Google Scholar 

  61. Ishii M (1975) Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris

    MATH  Google Scholar 

  62. Ishii M, Zuber N (1978) Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulative Flows. AIChE J 25(5):843-854

    Article  Google Scholar 

  63. Ishii M, Chawla TC (1979) Local drag laws in dispersed two-phase flows. Argonne National Laboratory Report NUREG/CR-1230, ANL-79-105, Argonne, Illinois, USA

    Google Scholar 

  64. Ishii M, Mishima K (1984) Two-Fluid Model and hydrodynamic Constitutive Equations. Nuclear Engineering and Design 82:107-126

    Article  Google Scholar 

  65. Jakobsen HA (1993) On the modelling and simulation of bubble column reactors using a two-fluid model. Dr Ing Thesis, Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  66. Jakobsen HA, Lindborg H, Dorao CA (2005) Modeling of Bubble Column Reactors: Progress and Limitations. Ind Eng Chem Res 44:5107-5151

    Article  Google Scholar 

  67. Johansen ST, Boysan F (1988) Fluid Dynamics in Bubble Stirred Ladles: Part 2. Mathematical Modelling. Met Trans B 19:755-764

    Google Scholar 

  68. Johansson SH, Davidson L, Olsson E (1993) Numerical Simulation of Vortex Sheadding Past Triangular Cylinders at High Reynolds Number Using a k-ε Turbulence Model. Int J Numer Methods Fluids 16:859-878

    Article  MATH  Google Scholar 

  69. Jones JB, Dugan RE (1996) Engineering Thermodynamics. Prentice-Hall International, Inc., Englewood Cliffs

    Google Scholar 

  70. Kariyasaki A (1987) Behavior of a single gas bubble in a liquid flow with a linear velocity profile. In: Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference, pp. 261-267, The Americal Society of Mechanical Engineers, New York

    Google Scholar 

  71. Kays WM, Crawford ME (1993) Convective Heat and Mass Transfer. Third Edition, McGraw-Hill, New York

    Google Scholar 

  72. Kolev NI (2002) Multiphase Flow Dynamics 1: Fundamentals. Springer, Berlin

    MATH  Google Scholar 

  73. Kataoka I, Serizawa A (1989) Basic Equations of Turbulence in Gas-Liquid Two-Phase Flow. Int J Multiphase Flow 15:1-13

    Article  Google Scholar 

  74. Kataoka I, Besnard DC, Serizawa A (1992) Basic equation of turbulence and modeling of interfacial transfer terms in gas -liquid two-phase flow. Chem Eng Comm 118:221-236

    Article  Google Scholar 

  75. Kjelstrup S, Bedeaux D (2001) Elements of irreversible thermodynamics for engineers. International Centre for Applied Thermodynamics, (ISBN: 975-97568-1-1), Istanbul

    Google Scholar 

  76. Krahn E (1956) Negative Magnus force. J Aero Sci 23:377-378

    Google Scholar 

  77. Kuo KK (1986) Principles of Combustion. John Wiley & Sons, New York

    Google Scholar 

  78. Kuo JT, Wallis GB (1988) Flow of bubbles through nozzles. Int J Multiphase Flow 14(5):547-564

    Article  Google Scholar 

  79. Lahey RT Jr (1990) The analysis of phase separation and phase distrbution phenomena using two-fluid models. Nucl Eng Des 122:17-40

    Article  Google Scholar 

  80. Lahey RT Jr (1992) The prediction of phase distribution and separation phenomena using two-fluid models. In: Lahey RT Jr (ed) Boiling Heat Transfer. Elsevier Science Publishers BV

    Google Scholar 

  81. Laidler KJ, Meiser JH (1995) Physical Chemistry. Second Edition. Houghton Mifflin Company, Boston

    Google Scholar 

  82. Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air-water flow. J Fluid Mech 222:95-118

    Article  Google Scholar 

  83. Langlois WE (1964) Slow Viscous Flow. Macmillan, New York

    Google Scholar 

  84. Laux H (1998) Modeling of dilute and dense dispersed fluid-particle flow. Dr Ing Thesis, Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  85. Lawler MT, Lu P-C (1971) The role of lift in radial migration of particles in a pipe flow. In: Zandi I (ed) Advances in Solid-Liquid Flow in Pipes and its Applications. Pergamon Press, Oxford, Chap 3, pp. 39-57

    Google Scholar 

  86. Lee SL (1987) Particle drag in a dilute turbulent two-phase suspension flow. Int J Multiphase Flow 13(2):247-256

    Article  Google Scholar 

  87. Lee SL (1987) A unified theory on particle transport in turbulent dilute two-phase suspension flow-II. Int J Multiphase Flow 13(1):137-144

    Article  Google Scholar 

  88. Lee SL, Börner T (1987) Fluid flow structure in a dilute turbulent two-phase suspension flow in a vertical pipe. Int J Multiphase Flow 13(2):233-246

    Article  MATH  Google Scholar 

  89. Lee SL, Durst F (1982) On the motion of particles in turbulent duct flows. Int J Multiphase Flow 8(2):125-146

    Article  Google Scholar 

  90. Lee SL, Wiesler MA (1987) Theory on transverse migration of particles in a turbulent two-phase suspension flow due to turbulent diffusion-I. Int J Multiphase Flow 13(1):99-111

    Article  MATH  Google Scholar 

  91. Long CA (1999) Essential Heat Transfer. Longman, Malaysia

    Google Scholar 

  92. Lopez de Bertodano M (1992) Turbulent Bubbly Two-Phase Flow in a Triangular Duct. PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY

    Google Scholar 

  93. Lopez de Bertodano M, Lahey RT Jr, Jones OC (1994) Development of a k-ε Model for Bubbly Two-Phase Flow. J Fluids Engineering 116:128-134

    Article  Google Scholar 

  94. Loth E (2000) Numerical approaches for motion of dispersed particles, droplets and bubbles. Progress in Energy and Combustion Science 26:161-223

    Article  Google Scholar 

  95. Maccoll JW (1928) Aerodynamics of a spinning sphere. J Roy Aero Soc 32:777-798

    Google Scholar 

  96. Magnaudet JJM (1997) The Forces Acting on Bubbles and Rigid Particles. ASME Fluids Engineering Division Summer Meeting, FEDSM97-3522

    Google Scholar 

  97. Magnaudet JJM, Eames I (2000) The Motion of High-Reynolds-Number Bubbles in Inhomogeneous Flows. Annu Rev Fluid Mech 32:659-708

    Article  MathSciNet  Google Scholar 

  98. Magnaudet JJM (2003) Small inertial effects on a sperical bubble, drop or particle moving near a wall in a time-dependent linear flow. J Fluid Mech 485:115-142

    Article  MATH  Google Scholar 

  99. Magnaudet JJM, Takagi S, Legendre D (2003) Drag, deformation and lateral migration of a buoyant drop moving near a wall. J Fluid Mech 476:115-157

    Article  MATH  Google Scholar 

  100. Maxey MR, Riley JJ (1983) Equation of motion for a a mall rigid sphere in a non-uniform flow. Phys Fluids 26 (4):883-889.

    Article  MATH  Google Scholar 

  101. Maxey MR (1993) The equation of motion for a small rigid sphere in a nonuniform or unsteady flow. ASME , FED-Vol 166, Gas-Solid Flows

    Google Scholar 

  102. Middleman S (1998) An Introduction to Mass and Heat Transfer: Principles of Analysis and Design. John Wiley & Sons, Inc., New York

    Google Scholar 

  103. Middleman S (1998) An Introduction to Fluid Dynamics: Principles of Analysis and Design. John Wiley & Sons, Inc., New York

    Google Scholar 

  104. Morrison FA, Stewart MB (1976) Small Bubble Motion in an Accelerating Liquid. J Appl Mech 43:299-403

    Google Scholar 

  105. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics 55:193-208

    Article  MATH  Google Scholar 

  106. Murai Y, Matsumoto Y, Song X-Q, Yamamoto F (2000) Numerical Analysis of Turbulent Structures Induced by Bubble Buoyancy. JSME Int J Series B-Fluids and Thermal Engineering 43 (2):180-187

    Google Scholar 

  107. Murai Y, Kitagawa A, Song X-Q, Ohta J, Yamamoto F (2000) Inverse Energy Cascade Structure of Turbulence in a Bubbly Flow (PIV measurement and results). JSME Int J Series B-Fluids and Thermal Engineering 43 (2):188-196

    Google Scholar 

  108. Naot D, Rodi W (1982) Calculation of secondary currents in cannel flow. Proc Am Soc Civ Engrs 108 (HY8):948-968

    Google Scholar 

  109. Ni J, Beckermann C (1990) A Two-Phase Model for Mass, Momentum, Heat, and Species Transport during Solidification. In: Charmchi M, Chyu MK, Joshi Y, Walsh SM (eds) Transport Phenomena in Material Processing, New York. ASME HTD-VOL. 132:45-56

    Google Scholar 

  110. Ni J, Beckermann C (1991) A Volume-Averaged Two-Phase Model for Transport Phenomena during Solidification. Metallurgical Transactions B 22B:349-361

    Article  Google Scholar 

  111. Oran ES, Boris JP (1987) Numerical Simulation of Reactive Flow. Elsevier, New York

    MATH  Google Scholar 

  112. Oseen CW (1910) Über die Stokes’sche Formel und Über eine verwandte Aufgabe in der Hydrodynamik. Ark Math Astron Fys 6(29):1-20

    Google Scholar 

  113. Perry RH, Green DW (1984) Chemical Engineer’s Handbook. Perry RH, Green DW (eds) 6. Edition, McGraw-Hill, New York

    Google Scholar 

  114. Planck M (1959) The Theory of Heat Radiation. Dover Publications, New York

    MATH  Google Scholar 

  115. Politano MS, Carrica PM, Converti J (2003) A model for turbulent polydisperse two-phase flow in vertical channels. Int J Multiphase Flow 29:1153-1182

    Article  MATH  Google Scholar 

  116. Pope S (2000) Turbulent Flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  117. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1999) Molecular Thermodynamics of Fluid-Phase Equilibria. Third Edition, Pretence Hall PTR, New Jersey

    Google Scholar 

  118. Proudman J (1916) On the motion of solids in a liquid processing vorticity. Proc Roy Soc A 92:408-424

    Article  Google Scholar 

  119. Proudman J, Pearson JRA (1957) Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. Journal of Fluid Mechanics 2:237-262

    Article  MATH  MathSciNet  Google Scholar 

  120. Pruppacher HR, Klett JD (1978) Microphysics of Clouds and Precipitation. D. Reidel Publishing Company, Dordrecht, Holland

    Google Scholar 

  121. Ranz W, Marshall W (1952) Evaporation from drops’’, Part I & II. Chem Eng Prog 48(3):141-180

    Google Scholar 

  122. Rizk MA, Elghobashi SE (1989) A Two-Equation Turbulence Model for Dispersed Dilute Confined Two-Phase Flows. Int J multiphase Flow 15(1):119-133

    Article  Google Scholar 

  123. Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447-459

    Article  MATH  MathSciNet  Google Scholar 

  124. Rybczynski W (1911) O ruchu postepowym kuli cieklej w osrodku lepkim. - Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Bull Int Acad Pol Sci Lett, Cl Sci Math Nat, Ser A, pp. 40-46

    Google Scholar 

  125. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385-400

    Article  MATH  Google Scholar 

  126. Saffman PG (1968) Corrigendum. J Fluid Mech 31:624

    Google Scholar 

  127. Sannæs BH (1997) Solids movement and concentration profiles in column slurry reactors. Dr. Ing. Thesis, Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  128. Sato Y, Sekoguchi K (1975) Liquid velocity distribution in two-phase bubble flow. Int J Multiphase Flow 2:79-95

    Article  MATH  Google Scholar 

  129. Sato Y, Sadatomi M, Sekoguchi K (1981) Momentum and heat transfer in two-phase bubble flow-I. Theory.-II A compari son between experimental data and theoretical calculations. Int J Multiphase Flow 7(6):167-190

    MATH  Google Scholar 

  130. Schlichting H, Gersten K (2000) Boundary-Layer Theory. Springer-Verlag, Berlin

    MATH  Google Scholar 

  131. Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of the local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14:115-135

    Article  Google Scholar 

  132. Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J Fluid Mech 14:136-157

    Article  Google Scholar 

  133. Sherwood TK (1959) Mass, Heat, and Momentum Transfer between Phases. Chem Eng Progr Symp Ser 55(25):71-85

    Google Scholar 

  134. Sherwood TK, Pigford RL, Wilkie CR (1975) Mass Transfer. McGraw-Hill, New York

    Google Scholar 

  135. Sideman S, Pinczewski W (1975) Turbulent Heat and Mass Transfer at Interfaces: Transport Models and Mechanisms. In: Gutfinger C (ed) Topics in Transport Phenomena: bioprocesses, mathematical treatment, mechanisms. Hemisphere, Washington

    Google Scholar 

  136. Siegel R, Howell JR (2002) Thermal Radiation Heat Transfer. Fourth Edition, Taylor & Francis, New York

    Google Scholar 

  137. Sirignano WA (1986) The Formulation of Spray Combustion Models: Resolution Compared to Droplet Spacing. Journal of Heat Transfer 108:633-639

    Article  Google Scholar 

  138. Sirignano WA (2000) Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge

    Google Scholar 

  139. Slattery JC (1999) Advanced Transport Phenomena. Cambridge University Press, New York

    MATH  Google Scholar 

  140. Soo SL (1989) Particles and Continuum: Multiphase Fluid Dynamics. Hemisphere Publishing Corporation, New York

    Google Scholar 

  141. Soo SL (1990) Multiphase Fluid Dynamics. Science Press, Beijing and Gower Technical, Aldershot

    Google Scholar 

  142. Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Section II: Solution of the equations in the case of a sphere oscillating in a mass of fluid either unlimited, or confined by a spherical envelope concentric with the sphere in its position of equilibrium. Trans Cambridge Phil Soc 9 (pt II):8-106

    Google Scholar 

  143. Stone HA (2000) Philip Saffman and viscous flow theory. J Fluid Mech 409:165-183

    Article  MATH  MathSciNet  Google Scholar 

  144. Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  145. Swanson WM (1961) The Magnus effect: A summary of investigations to date. Transactions of the ASME Journal of Basic Engineering, pp. 461-470

    Google Scholar 

  146. Sy F, Lightfoot EN (1971) Transient Creeping Flow Around Fluid Speheres. AIChE J 17(1):177-181

    Article  Google Scholar 

  147. Takemura F, Magnaudet JJM (2003) The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number. J Fluid Mech 495:235-253

    Article  MATH  Google Scholar 

  148. Taneda S (1957) Negative Magnus effect. Reports of Research Institute for Applied Mathematics 5(29):123-128, Printed in Fukuoka

    Google Scholar 

  149. Taneda S (1978) Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106. J Fluid Mech 85:187-192

    Article  Google Scholar 

  150. Taylor GI (1938) The Spectrum of Turbulence. Proc. Roy. Soc. London Series A 164:476-490

    Article  Google Scholar 

  151. Telionis DP (1981) Unsteady Viscous Flows. Springer-Verlag, New York

    MATH  Google Scholar 

  152. Thomas NH, Auton TR, Sene K, Hunt JCR (1983) Entrapment and transport of bubbles by transient large eddies in multiphase turbulent shear flows. In: Stephens HS, Stapleton CA (eds) International Conference on Physical Modelling of Multi-Phase Flows, BHRA Fluid Engineering, pp. 169-184, Cranfield

    Google Scholar 

  153. Thomson WJ (2000) Introduction to transport phenomena. Prentice Hall, Upper Saddle River

    Google Scholar 

  154. Tomiyama A, Sou A, Zun I, Kanami N, Sakaguchi T (1995) Effects of Eötvös number and dimensionless liquid volumetric flux on lateral motion of a bubble in a laminar duct flow’’, In: Serizawa A, Fukano T, Bataille J (eds) Advances in Multiphase Flow 1995, pp. 3-15, Elsevier

    Google Scholar 

  155. Tomiyama A, Miyoshi K, Tamai H, Zun I, Sakaguchi T (1998) A bubble tracking method for the prediction of spatial evolution of bubble flow in a vertical pipe. Third International Conference on Multiphase Flow, Lyon, France

    Google Scholar 

  156. Tomiyama A (1998) Struggle with Computational Bubble Dynamics. Third International Conference on Multiphase Flow, Lyon, France

    Google Scholar 

  157. Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849-1858

    Article  Google Scholar 

  158. Torobin LB, Gauvin WH (1959) Fundamental Aspects on Solid-Gas Flow. Part III: Accelerated Motion of a Particle in a Fluid. Can J Chem Engng 37:224-236

    Google Scholar 

  159. Viscanta R, Mengüc MP (1987) Radiation Heat Transfer in Combustion Systems. Prog Energy Combust Sci 13:97-160

    Article  Google Scholar 

  160. Vincenti WG, Kruger CH Jr. (1967) Introduction to Physical Gas Dynamics. Second Printing, John Wiley and Sons, Inc., New York

    Google Scholar 

  161. von Kàrmàn T (1939) Mechanische Ahnlichkeit Und Turbulenz. Proc 3rd Int Congress Appl Mech, Stockholm 1:85

    Google Scholar 

  162. Vuddagiri SR, Eubank PT (1998) Condensation of Mixed Vapors and Thermodynamics. AIChE J 44(11):2526-2541

    Article  Google Scholar 

  163. Wallis GB (1974) The terminal speed of single drops or bubbles in an infinite medium. Int J Multiphase Flow 1:491-511

    Article  MathSciNet  Google Scholar 

  164. Wallis GB (1989) Inertial Coupling in Two-Phase Flow:Macroscopic Properties of Suspensions in an Inviscid Fluid. Multiphase Science and Technology 5:239-361

    Google Scholar 

  165. Wang Y, Komori S, Chung MK (1997) A Turbulence Model for Gas-Solid Two-Phase Flows. Journal of Chemical Engineering of Japan 30(3):526-534

    Article  Google Scholar 

  166. Whitaker S (1987) Mass Transport and Reaction in Catalyst Pellets. Transport in Porous Media 2:269-299

    Google Scholar 

  167. Whitaker S (1992) The species mass jump condition at a singular surface. Chem Eng Sci 47(7):1677-1685

    Article  MathSciNet  Google Scholar 

  168. Whitaker S (1999) The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  169. White FM (1974) Viscous Fluid Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  170. White FM (1999) Fluid Mechanics. Fourth Edition, McGraw-Hill, Inc., New York

    Google Scholar 

  171. Willetts BB, Murray CG (1981) Lift exerted on stationary spheres in turbulent flows. J Fluid Mech 105:487-505

    Article  Google Scholar 

  172. Yang S-M, Leal LG (1991) A note on memory-integral contributions to the force on an accelerating spherical drop at low Reynolds number. Phys Fluids A 3(7):1822-1824

    Article  Google Scholar 

  173. Yamamoto F, Koukawa M, Monya H, Teranishi A (1991) Particle lift and drag forces in linear turbulent shear flows. In: Sommerfeld M, Wennerberg D (eds) Fifth Workshop on Two-Phase Flow Predictions: Proceedings, pp. 323-332, Jülich, Forschungszentrum

    Google Scholar 

  174. Zapryanov Z, Tabakova S (1999) Dynamics of Bubbles, Drops and Rigid Particles. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsen, H.A. (2009). Constitutive Equations. In: Chemical Reactor Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68622-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68622-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25197-2

  • Online ISBN: 978-3-540-68622-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics