Skip to main content

Fluidized Bed Reactors

  • Chapter
Chemical Reactor Modeling
  • 5664 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alappat BJ, Rane VC (2001) Solids Circulation Rate in Recirculating Fluidized Bed. J Energy Eng 127(2):51-68

    Article  Google Scholar 

  2. Anthony EJ (1995) Fluidized bed combustion of alternative solid fuels: Status, successes and problems of the technology. Prog Energy Combust Sci 21:239-268

    Article  Google Scholar 

  3. Anthony EJ, Jia L, Burwell SM, Najman J, Bulewicz EM (2006) Understanding the Behavior of Calsium Compounds in Petroleum Coke Fluidized Bed Combustion (FBC) Ash. journal of Energy Resources Technology 128:290-299

    Article  Google Scholar 

  4. Arena U, Chirone R, D’Amore M, Miccio M, Salatino P (1995) Some issures in modelling bubbling and circulating fluidized-bed coal combustors. Powder Technology 82:301-316

    Article  Google Scholar 

  5. Baeyens J, Geldart D (1986) Solids Mixing. In: Geldart D (ed) Gas Fluidization Technology, Chap 5, pp 97-122, John Wiley & Sons, Chichester

    Google Scholar 

  6. Baird MHI, Rice RG (1975) Axial dispersion in large unbaffled columns. Chem Eng J 9:171-174

    Article  Google Scholar 

  7. Balzer G, Simonin O (1993) Extension of Eulerian gas-solid flow modeling to dense fluidized beds. Rapport HE-44/93.13, Laboratorie National d’Hydraulique, EDF, Chatou, France

    Google Scholar 

  8. Balzer G, Boëlle A, Simonin O (1995) Eulerian gas-solid flow modelling of dense fluidized bed. Fluidization VIII, International Symposium of the Engineering Foundation, Tours, 14-19 May, pp 1125-1134

    Google Scholar 

  9. Balzer G, Simonin O (1996) Turbulent eddy viscosity derivation in dilute gas-solid turbulent flows. 8th Workshop on Two-Phase Flow Predictions, 26-29 March, Merseburg, Germany

    Google Scholar 

  10. Bauer R, Schlünder EU (1978) Effective radial thermal conductivity of packings in gas flow. Part II. Thermal conductivity of the packing fraction without gas flow. Int Chem Eng 18:189-204

    Google Scholar 

  11. Bel F’dhila R, Siminin O (1992) Eulerian prediction of a turbulent bubbly flow downstream of a sudden pipe expansion. Proc 6th Workshop on Two-Phase Flow Predictions, Erlangen, FRG, March 30-April 2, pp 264-273

    Google Scholar 

  12. Benyahia S, Syamlal M, O’Brien T (2006) Extension of Hill-Koch-Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technology 162:166-174

    Article  Google Scholar 

  13. Berruti F, Chaouki J, Godfroy L, Pugsley TS, Patience GS (1995) Hydrodynamics of Circulating Bed Risers: A Review. Can J Chem Eng 73:579-601

    Google Scholar 

  14. Bhusarapu S, Al-Dahhan MH, Dudukovic MP, Trujillo S, O’Hern TJ (2005) Experimental Study of the Solids Velocity Field in Gas-Solid Risers. Ind Eng Chem Res 44:9739-9749

    Article  Google Scholar 

  15. Biyikli S, Tuzla K, Chen JC (1989) A phenomenological model for heat transfer in freeboard of fluidized beds. Can J Chem Eng 67:230-236

    Article  Google Scholar 

  16. Bouillard JX, Lyczkowski RW, Folga S, Gidaspow D, Berry GF (1989) Hydrodynamics of Erosion of Heat Exchanger Tubes in Fluidized Bed Combustor. Can J Chem Eng 67(2):218-229

    Google Scholar 

  17. Brereton CMH, Grace JR, Yu J (1988) Axial Gas Mixing in a Circulating Fluidized Bed. In: eds Basu P, Large JF Circulating Fluidized Bed Tecnology II, Pergamon Press, New York, p 307

    Google Scholar 

  18. Brereton C (1997) Combustion performance. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating Fluidized Beds, First Edition, Blackie Academic & Professional, London, chap 10, pp 369-416

    Google Scholar 

  19. Carnahan NF, Starling KE (1969) Equation of State for Nonattracting Rigid Spheres. Journal of Chemical Physics 51(2):635-636

    Article  Google Scholar 

  20. Chandel MK, Alappat BJ (2006) Pressure drop and gas bypassing in recirculating fluidized beds. Chem Eng Sci 61:1489-1499

    Article  Google Scholar 

  21. Chapman S, Cowling TG (1970) The Mathematical Theory of Non-Uniform Gases. Cambridge Mathematical Library, Cambridge, third edition

    Google Scholar 

  22. Clift R (1968) Hydrodynamics of Bubbling Fluidized Beds. In: Geldart D (ed) Gas Fluidization Technology, Chap 4, pp 53-122, John Wiley & Sons Ltd, Chichester

    Google Scholar 

  23. Clift R, Grace JR, Weber ME (1978) Bubble, Drops, and Particles. Academic Press, New York

    Google Scholar 

  24. Clift R, Grace JR (1985) Continuous Bubbling and Slugging. In: eds Davidson JF, Clift R, Harrison D Fluidization, Academic Press, London

    Google Scholar 

  25. Csanady GT (1963) Turbulent diffusion of heavy particles in the atmosphere. J Atm Sci 20:201-208

    Article  Google Scholar 

  26. Danckwerts PV (1953) Continuous Flow Systems: Distribution of Residence Times. Chem Eng Sci 2(1):1-18

    Article  Google Scholar 

  27. Darton RC, LaNauze RD, Davidson FJ, Harrison D (1977) Bubble Growth due to Coalescence in Fluidized Beds. Trans IChemE 55:274-280

    Google Scholar 

  28. Davenport WG, Richardson FD, Bradshaw AV (1974) Spherical cap bubbles in low density liquids. Chem Eng Sci 22:1221-1235

    Article  Google Scholar 

  29. Davidson JF, Harrison D (1963) Fluidized Particles. Cambridge University Press, Cambridge

    Google Scholar 

  30. Davidson JF, Harrison D, Darton RC, LaNauze RD (1977) The Two-Phase Theory of Fluidization and its Application to Chemical Reactors. In: eds Lapidus L, Amundson NR Chemical Reactor Theory, A Review. Prentice-Hall, Englewood Cliffs, New Jersey, pp 583-685

    Google Scholar 

  31. Davies RM, Taylor G (1950) The Mechanics of Large Bubbles Rising through Extended Liquids and through Liquids in Tubes. Proc Roy Soc London Ser A, Mathematical and Physical Sciences, 200(1062):375-390

    Article  Google Scholar 

  32. Denn MM, Shinnar R (1987) Coal Gasification Reactors. In: Carberry JJ, Varma A (eds) Chemical Reaction and Reactor Engineering, Marcel Dekker Inc, New York, Chap 8, pp 499-543

    Google Scholar 

  33. Deutsch E, Simonin O (1991) Large Eddy Simulation applied to the motion of particles in steady homogeneous turbulence. Turbulence Modification in Multiphase Flow, ASME FED 1:34-42

    Google Scholar 

  34. Ding J, Gidaspow D (1990) A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. AIChE J 36(4):523-538

    Article  Google Scholar 

  35. Drew DA (1983) Mathematical modeling of two-phase flow. Ann Rev Fluid Mech 15:261-291

    Article  Google Scholar 

  36. Drew DA, Lahey RT Jr (1993) Analytical Modeling of Multiphase Flow. In: Ed Roco MC Particulate Two-Phase Flow, Butterworth-Heinemann, Boston, Chap 16, pp 509-566

    Google Scholar 

  37. Dry RJ, Beeby CJ (1997) Applications of CFB technology to gas-solid reactions. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating Fluidized Beds, First Edition, Blackie Academic & Professional, London, chap 12, pp 441-465

    Google Scholar 

  38. Elghobashi SE, Abou-Arab TW (1983) A two-equation turbulence model for two-phase flows. Phys Fluids 26:931-938

    Article  MATH  Google Scholar 

  39. Enwald H, Peirano E, Almstedt A-E (1996) Eulerian Two-Phase Flow Theory Applied to Fluidization. Int J Multiphase Flow 22(Supplement):21-66

    Google Scholar 

  40. Enwald H, Almstedt AE (1999) Fluid dynamics of a pressurized fluidized bed: Comparison between numerical solutions from two-fluid models and experimental results. Chem Eng Sci 54:329-342

    Article  Google Scholar 

  41. Enwald H, Peirano E, Almstedt A-E, Leckner B (1999) Simulation of a bubbling fluidized bed. Experimental validation of the two-fluid model and evaluation of a parallel multiblock solver. Chem Eng Sci 54:311-328

    Article  Google Scholar 

  42. Ergun S (1952) Fluid Flow Through Packed Columns. Chem Eng Prog 48(2):89-94

    Google Scholar 

  43. Ettehadieh B, Gidaspow D, Lyczkowski RW (1984) Hydrodynamics of Fluidization in a Semicircular Bed with a Jet. AIChE J 30(4):529-536

    Article  Google Scholar 

  44. Fan L-S, Zhu C (1998) Principles of Gas-Solid Flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  45. Fan Y, Ye S, Chao Z, Lu C, Sun G, Shi M (2002) Gas-Solid Two-Phase Flow in FCC Riser. AIChE J 48(9):1869-1887

    Article  Google Scholar 

  46. Foka M, Chaouki J, Guy C, Klvana D (1994) Natural Gas Combustion in a Catalytic Turbulent Fluidized Bed. Chem Eng Sci 49(24A):4269-4276

    Google Scholar 

  47. Froment GF, Bischoff KB (1990) Chemical Reactor Analysis and Design. John Wiley and Sons, New York, Second Edition

    Google Scholar 

  48. Gascón J, Téllez C, Herguido J, Jakobsen HA, Menéndez M (2006) Modeling of Fluidized Bed Reactors With Two Reaction Zones. AIChE J 52(11):3911-3923

    Article  Google Scholar 

  49. Geldart D (1973) Types of gas fluidization. Powder Technology 7:285-292

    Article  Google Scholar 

  50. Gidaspow D (1994) Multiphase Flow and Fluidization-Continuum and Kinetic Theory Descriptions. Academic Press, Harcourt Brace & Company, Publishers, Boston

    MATH  Google Scholar 

  51. Gibilaro LG, Di Felice RI, Waldran SP (1985) Generalized friction factor and drag coefficient correlations for fluid-particle interactions. Chem Eng Sci 40:1817-1823

    Article  Google Scholar 

  52. Grace JR (1986) Contacting Modes and Behaviour Classification of Gas-Solid and Other Two-Phase Suspensions. Can J Chem Eng 64:353-363

    Article  Google Scholar 

  53. Grace JR (1986) Fluid Beds as Chemical Reactors. In: Geldart D (ed) Gas Fluidization Technology, Chap 11, pp 285-339, John Wiley & Sons, Chichester

    Google Scholar 

  54. Grace JR (1986) Hydrodynamics of Bubbling Fluidized Beds. In: Geldart D (ed) Gas Fluidization Technology, Chap 4, pp 53-95, John Wiley & Sons, Chichester

    Google Scholar 

  55. Grace JR, Baeyens J (1986) Instrumentation and Experimental Techniques. In: Geldart D (ed) Gas Fluidization Technology, Chap 13, pp 415-462, John Wiley & Sons, Chichester

    Google Scholar 

  56. Grace JR (1990) High-Velocity Fluidized Bed Reactors. Chem Eng Sci 45(8):1953-1966

    Article  Google Scholar 

  57. Grace JR, Lim KS (1997) Reactor modeling for high-velocity fluidized beds. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating Fluidized Beds, First Edition, Blackie Academic & Professional, London, chap 15, pp 504-524

    Google Scholar 

  58. Grace JR, Bi H (1997) Introduction to circulating fluidized beds. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating Fluidized Beds, First Edition, Blackie Academic & Professional, London, chap 1, pp 1-20

    Google Scholar 

  59. Grad H (1949) On the kinetic theory of rarified gases. Comm Pure Appl Math 2(4):331-407

    Article  MATH  MathSciNet  Google Scholar 

  60. Gunn DJ (1978) Transfer of heat or mass to particle in fixed bed and fluidized beds. Int J Heat Mass Transfer 21:467-476

    Article  Google Scholar 

  61. Guo Q, Werther J (2004) Flow Behaviours in a Circulating Fluidized Bed with Various Bubble Cap Distributors. Ind Eng Chem Res 43:1756-1764

    Article  Google Scholar 

  62. Hartge E-U, Li Y, Werther J (1986) Analysis of the local structure of the two phase flow in a fast fluidized bed. In: CFB Technology, Pergamon press, pp 153-160

    Google Scholar 

  63. Hartge E-U, Klett C, Werther J (2007) Dynamic Simulation of the Particle Size Distribution in a Circulating Fluidized Bed Combustor. Chem Eng Sci 62:281-293

    Article  Google Scholar 

  64. He J, Simonin O (1993) Non-equilibrium prediction of the particle-phase stress tensor in vertical pneumatic conveying. Gas-Solid Flows, ASME FED 166:253-263

    Google Scholar 

  65. He J, Simonin O (1994) Modélisation numérique des écoulements gaz-solides en conduite verticale. Rapport HE-44/94/021A, Laboratoire National d’Hydraulique, EDF, Chatou, France

    Google Scholar 

  66. Hunt ML (1997) Discrete element simulations for granular material flows: effective thermal conductivity and self-diffusivity. Int J Heat Mass Transfer 40:3059-3068

    Article  MATH  Google Scholar 

  67. Issangya AS, Grace JR, Bai D, Zhu J (2000) Further measurements of flow dynamics in a high-density circulating fluidized bed riser. Powder Technology 111:104-113

    Article  Google Scholar 

  68. Jenkins JT, Savage SB (1983) A theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J Fluid Mechanics 130:187-202

    Article  MATH  Google Scholar 

  69. Jenkins JT, Richman MW (1985) Grad’s 13 moment system for a dense gas of inelastic spheres. Arch Ratio Mech Anal 87:355-377

    MATH  MathSciNet  Google Scholar 

  70. Johnson PC, Nott P, Jackson R (1990) Frictional-collisional equations of motion for particulate flows and their application to chutes. J Fluid Mech 210:501-535

    Article  Google Scholar 

  71. Jørgensen V (2007) Numerical investigation of integrated reactor/separator designs for precombustion with carbondioxide capture. MSc Thesis, the Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  72. Jones DRM, Davidson JF (1965) The Flow of Particles from a Fluidized Bed through an Orifice. Rheol Acta 4(3):180-192

    Article  Google Scholar 

  73. Kagawa H, Mineo H, Yamazaki R, Yoshida K (1991) A gas-solid contacting model for fast-fluidized bed. In: eds Basu P, Horio M, Hasatani M Circulating Fluidized Bed Technology III, Pergamon, Oxford, pp 551-556

    Google Scholar 

  74. Koch DL (1990) Kinetic theory for a monodisperse gas-solid suspension. Phys Fluids A2:1711-1723

    Google Scholar 

  75. Koch DL, Sangani AS (1999) Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: Kinetic theory and numerical simulations. J Fluid Mechanics 400:229-263

    Article  MATH  Google Scholar 

  76. Kuipers JAM, Prins W, van Swaaij WPM (1992) Numerical calculation of wall-to-bed heat-transfer coefficients in gas-fluidized beds. AIChE J 38:1079-1091

    Article  Google Scholar 

  77. Kuipers JAM, Hoomans BPB, van Swaaij WPM (1968) Hydrodynamic Models of Gas-Fluidized Beds and Their Role for Design and Operation of Fluidized Bed Chemical Reactors. In: Fan L-S, Knowlton TM (eds) Proc of the Ninth Engineering Foundation Conference on Fluidization, Engineering Foundation, New York, ISBN/ISSN: 0-939204-56-8

    Google Scholar 

  78. Kunii D, Levenspiel O (1968) Bubbling Bed Model for Kinetic Processes in Fluidized Beds. I & EC Process Design and Development 7(4):481-492

    Article  Google Scholar 

  79. Kunii D, Levenspiel O (1968) Bubbling Bed Model. I & EC Fundamentals 7(3):446-452

    Article  Google Scholar 

  80. Kunii D (1980) Chemical reaction engineering and research and development of gas solid systems. Chem Eng Sci 35:1887-1911

    Article  Google Scholar 

  81. Kunii D, Levenspiel O (1990) Fluidized Reactor Models. 1. For Bubbling Beds of Fine, Intermediate, and large particles. 2. For the Lean Phase: Freeboard and Fast Fluidization. Ind Eng Chem Res 29:1226-1234

    Article  Google Scholar 

  82. Kunii D, Levenspiel O (1991) Fluidization Engineering. Butterworth-Heinemann, Second edition, Boston

    Google Scholar 

  83. Kunii D, Levenspiel O (1997) Circulating fluidized-bed reactors. Chem Eng Sci 52(15):2471-2482

    Article  Google Scholar 

  84. Kunii D, Levenspiel O (2000) The K-L reactor model for circulating fluidized beds. Chem Eng Sci 55:4563-4570

    Article  Google Scholar 

  85. Lindborg H, Lysberg M and Jakobsen HA (2007) Practical validation of the two-fluid model applied to dense gas-solid flows in fluidized beds. Chem Eng Sci 62:5854-5869

    Article  Google Scholar 

  86. Leckner B (1998) Fluid bed combustion: Mixing and pollutant limitation. Prog Energy Combust Sci 24:31-61

    Article  Google Scholar 

  87. Lee YY (1997) Design considereations for CFB boilers. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating Fluidized Beds, First Edition, Blackie Academic & Professional, London, chap 11, pp 417-440

    Google Scholar 

  88. Li F, Zhai J, Fu X, Sheng G (2006) Characterization of Fly Ashes from Circulating Fluidized Bed Combustion (CFBC) Boilers Cofiring Coal and Petroleum Coke. Energy & Fuels 20:1411-1417

    Article  Google Scholar 

  89. Lim KS, Gururajan VS, Agarwal PK (1993) Mixing of Homogeneus Solids in Bubbling Fluidized Beds: Theoretical Modelling and Experimental Investigation Using Digital Image Analysis. Chem Eng Sci 48(12):2251-2265

    Article  Google Scholar 

  90. Lin JS, Chen MM, Chao BT (1985) A Novel Radioactive Particle Tracking Facility for Measurement of Solids Motion in Gas Fluidized Beds. AIChE J 31(3):465-473

    Article  Google Scholar 

  91. Lindborg H (2007) Modeling and simulation of Chemical Reactor Flows. Dr ing Thesis, The Norwegian University of Science and Technology, Trondheim, In preparation

    Google Scholar 

  92. Lindborg H, Lysberg M, Jakobsen HA (2007) Practical Validation of the Two-Fluid Model Applied to Dense Gas-Solid Flows in Fluidized Beds. Submitted to Chem Eng Sci 2007

    Google Scholar 

  93. Longwell JP, Rubin ES, Wilson J (1995) Coal: Energy for the future. Prog Energy Combust Sci 21:269-360

    Article  Google Scholar 

  94. Lun CKK, Savage SB (1986) The effect of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mechanica 63:15-44

    Article  MATH  Google Scholar 

  95. Ma D, Ahmadi G (1986) An equation of state for dense rigid sphere gases. J Chem Phys 84(6):3449-3450

    Article  Google Scholar 

  96. Marmo L, Manna L, Rovero G (1995) Comparison among several predictive models for circulating fluidized bed reactors. In: Laguérie C, Large JF Preprints for Fluidization VIII, vol 1, pp 475-482

    Google Scholar 

  97. Matsen JM (1997) Design and scale-up of CFB catalytic reactors. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating Fluidized Beds, First Edition, Blackie Academic & Professional, London, chap 14, pp 489-503

    Google Scholar 

  98. Massoudi M, Rajagopal KR, Ekmann JM, Mathur MP (1992) Remarks on the Modeling of Fluidized Systems. AIChE J 38(3):471-472

    Article  Google Scholar 

  99. Monceaux L, Azzi M, Molodtsof Y, Large JF (1986) Overall and local characterization of flow regimes in circulating fluidized bed. In: CFB Technology, Pergamon press, pp 185-191

    Google Scholar 

  100. Mudde RF, Simonin O (1999) Two- and three-dimensional simulations of a bubble plume using a two-fluid model. Chem Eng Sci 54:5061-5069

    Article  Google Scholar 

  101. Natarajan VVR, Hunt ML (1998) Kinetic theory analysis of heat transfer in granular flows. International Journal of Heat and Mass Transfer, 41:1929–1944, 1998.

    Article  MATH  Google Scholar 

  102. Nicklin DJ (1962) 2-Phase Bubble Flow. Chem Eng Sci 17(9):693-702

    Article  Google Scholar 

  103. Ochoa-Fernández E, Rusten HK, Jakobsen HA, Magnus Rønning M, Holmen A, Chen D (2005) Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: Sorption kinetics and reactor simulation. Catalysis Today 106:41-46

    Google Scholar 

  104. Ogawa S, Umemura A, Oshima N (1980) On the Equations of Fully Fluidized Granular Materials. J Applied Mathematics and Physics 31:483-493

    Article  MATH  Google Scholar 

  105. Ocone R, Sundaresan S, Jackson R (1993) Gas-Particle Flow in a Duct of Arbitrary Inclination with Particle-Particle Interactions. AIChE J 39(8):1261-1271

    Article  Google Scholar 

  106. Pallarés D, Johnsson F (2006) Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds. Progress in Energy and Combustion Science 32:539-569

    Article  Google Scholar 

  107. Patil DJ, Smit J, van Sint Annaland M, Kuipers JAM (2006) Wall-to-bed heat transfer in gas-solid bubbling fluidized beds. AIChE J 52:58-74

    Article  Google Scholar 

  108. Peirano E (1996) The Eulerian/Eulerian Formulation Applied to Gas-Particle Flows. Report A96-218, ISSN 0281-0034, Department of Energy Conversion, Chalmers Univesity of Technology, Sweden

    Google Scholar 

  109. Peirano E (1998) Modelling and Simulation of Turbulent Gas-Solid Flow Applied to Fluidization. PhD thesis, Chalmers Univesity of Technology, Sweden

    Google Scholar 

  110. Peirano E, Leckner B (1998) Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion. Progress in Energy and Combustion Science 24:259-296

    Article  Google Scholar 

  111. Perry RH, Green DW (2007) Perry’s chemical engineers’ handbook. In: Green DW, Robert H. Perry RH (eds) McGraw-Hill, New York, Eighth Edition, ISBN: 0-07-142294-3

    Google Scholar 

  112. Ranade VV (2002) Computational Flow Modeling for Chemical Reactor Engineering. Academic Press, San Diego

    Book  Google Scholar 

  113. Reh L (1971) Fluidized Bed Processing. Chem Eng Prog 67(2):58-63

    Google Scholar 

  114. Rodes MJ, Laussmann P (1992) A Study of the Pressure Balance Around the Loop of a Circulating Fluidized Bed. Can J Chem Eng 70:625-630

    Article  Google Scholar 

  115. Rowe PN, Partridge BA (1965) An X-ray Study of Bubbles in Fluidized Beds. Trans Instn Chem Engrs 43:T157-T175

    Google Scholar 

  116. Rowe PN (1971) Experimental Properties of Bubbles. In: Davidson JF, Harrison D (eds), Fluidization, Chap4, pp 121-191 Academic Press, London

    Google Scholar 

  117. Rowe PN, Yates JG (1987) Fluidized-Bed Reactors. In: Carberry JJ, Varma A (eds) Chemical Reaction and Reactor Engineering, Marcel Dekker Inc, New York, Chap 7, pp 441-498

    Google Scholar 

  118. Rusten HK, Ochoa-Fernández E, Chen D, Jakobsen HA (2007) Numerical investigation of sorption enhanced steam methane reforming using Li2ZrO3 as CO2-acceptor. Submitted to Ind Eng Chem Res 2007

    Google Scholar 

  119. Samuelsberg A, Hjertager BH (1996) An experimental and numerical study of flow patterns in a circulating fluidized bed reactor. Int J Multiphase Flow 22(3):575-591

    Article  MATH  Google Scholar 

  120. Samuelsberg A, Hjertager BH (1996) Computational Modeling of Gas/Particle Flow in a Riser. AIChE J 42(6):1536-1546

    Article  Google Scholar 

  121. Saraiva PC, Azevedo JLT, Carvalho MG (1993) Mathematical Simulation of a Circulating Fluidized Bed Combustor. Combust Sci and Tech 93:223-243

    Article  Google Scholar 

  122. Simonin O, Viollet PL (1989) Numerical study on phase dispersion mechanisms in turbulent bubbly flows. Proc Int Conf on Mechanics of Two-Phase Flows, 12-15 June, Taipei, Taiwan

    Google Scholar 

  123. Simonin O (1990) Eulerian formulation for particle dispersion in turbulent two-phase flows. In: Sommerfeld M, Wennerberg P Fifth Workshop on Two-phase Flow Predictions. Erlangen, FRG, pp 156-166

    Google Scholar 

  124. Simonin O, Viollet PL (1990) Prediction of an Oxygen Droplet Pulversization in a Compressible Subsonic Coflowing Hydrogen Flow. In: Numerical Methods for Multiphase Flows, ASME FED 91:73-82

    Google Scholar 

  125. Simonin O, Flour I (1992) An Eulerian Approach for Turbulent Reactive Two-Phase Flows Loaded with Discrete Particles. In: Sommerfeld M Sixth Workshop on Two-phase Flow Predictions. Erlangen, pp 61-62

    Google Scholar 

  126. Simonin O (1995) Two-fluid model approach for turbulent reactive two-phase flows. Summer school on numerical modelling and prediction of dispersed two-phase flows. IMVU, Merseburg, Germany

    Google Scholar 

  127. Srivastava A, Sundaresan S (2003) Analysis of a frictional-kinetic model for gas-particles flow. Powder Technology 129(1-3):72-85

    Article  Google Scholar 

  128. Syamlal M, Gidaspow D (1985) Hydrodynamics of fluidization: Prediction of wall to bed heat transfer coefficients. AIChE J 31:127-135

    Article  Google Scholar 

  129. Tayebi D, Svendsen HF, Jakobsen HA, Grislingås A (2001) Measurements Techniques and Data Interpretations for Validating CFD Multi Phase Reactor Models. Chem Eng Comm 186:57-159

    Article  Google Scholar 

  130. Toomey RD, Johnstone HF (1952) Gaseous Fluidization of Solid Particles. Chem Eng Prog 48(5):220-226

    Google Scholar 

  131. Trambouze P, Euzen J-P (2004) Chemical Reactors: From Design to Operation. Institut Francais du Pétrole Publications, Paris

    Google Scholar 

  132. van Deemter JJ (1961) Mixing and contacting in gas-solid fluidized beds. Chem Eng Sci 13:143-154

    Article  Google Scholar 

  133. Weinstein H, Shao M, Schnitzlein M (1986) Radial variation in solid density in high velocity fluidization. In: CFB Technology, Pergamon press, pp 201-206

    Google Scholar 

  134. Werther J (1978) Mathematical Modeling of Fluidized-Bed Reactors. Chem Ing Techn 50(11):850-860

    Article  Google Scholar 

  135. Werther J, Hartge E-U (2004) A population balance model of the particle inventory in a fluidized-bed reactor/regenerator system. Powder Technology 148:113-122

    Article  Google Scholar 

  136. Werther J, Hartge E-U (2004) Modeling of Industrial Fluidized-Bed Reactors. Ind Eng Chem Res 43:5593-5604

    Article  Google Scholar 

  137. Winkler F (1922) Patentschrift Nr 37970, Reichspatentamt

    Google Scholar 

  138. Wu JC, Deluca RT, Wegener PP (1974) Rise speed of spherical cap bubbles at intermediate Reynolds number. Chem Eng Sci 29:1307-1309

    Article  Google Scholar 

  139. Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift I. Intrinsic kinetics. AIChE J, 35:88-96

    Article  Google Scholar 

  140. Yang W-C, Knowlton TM (1993) L-valve equations. Powder Technology 77:49-54

    Article  Google Scholar 

  141. Yates JG (1975) Fluidized bed reactors. The chemical Engineer, No 303, pp 671-677

    Google Scholar 

  142. Yates JG (1983) Fundamentals of Fluidized-bed Chemical Processes. Butterworths, London

    Google Scholar 

  143. Yates JG (1996) Effects of Temperature and Pressure on Gas-Solid Fluidization. Chem Eng Sci 51(2):167-205

    Article  Google Scholar 

  144. Yerushalmi J (1981) Circulating Fluidized Bed Boilers. Fuel Processing Technology 5:25-63

    Article  Google Scholar 

  145. Zehner P, Schlünder EU (1970) Wärmeleitfähigkeit von Schüttungen bei mäsigen Temperaturen. Chem Ing Tech 42:933-941

    Article  Google Scholar 

  146. Zenz FA, Othmer DF (1960) Fluidization and Fluid-Particle Systems. Reinhold Publishing Corporation, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsen, H.A. (2009). Fluidized Bed Reactors. In: Chemical Reactor Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68622-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68622-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25197-2

  • Online ISBN: 978-3-540-68622-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics