Skip to main content

Pathophysiology and Aging of Bone

  • Chapter
Radiology of Osteoporosis

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1504 Accesses

Abstract

Human aging is a complex process which, as a result of multiple genetically programmed mechanisms as well as stochastic events, leads to accumulation of damaging alterations in vital cellular functions. A variety of in vitro studies indicate that aging is associated with an overall decline in protein synthesis and protein turnover as well as with an accumulation of damaged molecules (Glowacki 1999). With respect to bone turnover, several authors investigated the effects of age on generation, maturation, and function of osteoblasts in experimental animals as well as in humans. In rats, for example, a defect in maturation of preosteoblasts into osteoblasts was demonstrated, which led to a more than ten-fold decrease in the number of osteoblasts with age (Roholl et al. 1994). Quarto et al. (1995) determined the number of osteoprogenitor cells in bone marrow from adult and aged rats as well as their ability to differentiate and form bone. The number of adherent colony forming cells was significantly lower in marrow cells from aged rats than in those from adult rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah BM, Stilgren LS, Nissen N, Kassem M, Jorgensen HRI, Abrahamsen B (2005) Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int 76:90–97

    PubMed  CAS  Google Scholar 

  • Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    PubMed  Google Scholar 

  • Albaga OM, Ralston SH (2003) Genetic determinants of susceptibility to osteoporosis. Endocrinol Metab Clin North Am 32:65–81

    Google Scholar 

  • Aringer M, Kiener HP, Koeller MD, Artemiou O, Zuckermann A, Wieselthaler G, Klepetko W, Seidl G, Kainberger F, Bernecker P, Smolen JS, Pietschmann P (1998) High turnover bone disease following lung transplantation. Bone 23:485–488

    PubMed  CAS  Google Scholar 

  • Ballanti P, Bonucci E, Della-Rocca C, Milani S, Lo-Cascio V, Lo-Imbibo B (1990) Bone histomorphometric reference values in 88 normal Italian subjects. Bone Miner 11:187–197

    PubMed  CAS  Google Scholar 

  • Battmann A, Battmann A, Jundt G, Schulz A (1997) Endosteal human bone cells (EBC) show age-related activity in vitro. Exp Clin Endocrinol Diabetes 105:98–102

    PubMed  CAS  Google Scholar 

  • Bauer DC, Sklarin PM, Stone KL, Black DM, Nevitt MC, Ensrud KE, Arnaud CD, Genant HK, Garnero P, Delmas PD, Lawaetz H, Cummings SR (1999) Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res 14:1404–1410

    PubMed  CAS  Google Scholar 

  • Bergmann RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11:568–577

    Google Scholar 

  • Bilezikian JP (1999) Primary hyperparathyroidism. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams and Wilkins, Philadelphia, pp 187–192

    Google Scholar 

  • Blain H, Vuillemin A, Blain A, Guillemin F, De Talance N, Doucet B, Jeandel C (2004) Age-related femoral bone loss in men: evidence for hyperparathyroidism and insulinlike growth factor-1 deficiency. J Gerontol A Biol Sci Med Sci 59:1285–1289

    PubMed  Google Scholar 

  • Bourdel A, Mahoudeau JA, Guadyier-Souquières, Leymarie P, Sabatier JP, Loyau G (1989) Étude de la fonction gonadique au cours de l’ostéoporose masculine en apparence primitive. Presse Med 34:1691–1694

    Google Scholar 

  • Bouxsein ML (2003) Bone quality: where do we go from here? Osteoporos Int 14:118–127

    PubMed  Google Scholar 

  • Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age-and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691

    PubMed  CAS  Google Scholar 

  • Canalis E, Bilezikian JP, Angeli A, Giustina A (2004) Perspectives on glucocorticoid-induced osteoporosis. Bone 34:593–598

    PubMed  CAS  Google Scholar 

  • Cao J, Venton L, Sakata T, Halloran BP (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18:270–277

    PubMed  CAS  Google Scholar 

  • Carpenter TO (2003) Oncogenic osteomalacia — a complex dance of factors. N Engl J Med 348:1705–1708

    PubMed  Google Scholar 

  • Catherwood BD, Marcus R, Madvig P, Cheung AK (1985) Determinants of bone gamma-carboxyglutamic acid containing protein in plasma of healthy aging subjects. Bone 6:9–13

    PubMed  Google Scholar 

  • Chavassieux P, Meunier PJ (2001) Histomorphometric approach of bone loss in men. Calcif Tissue Int 69:209–213

    PubMed  CAS  Google Scholar 

  • Christiansen P, Steiniche T, Brixen K, Hessov I, Melsen F, Heickendorff L, Mosekilde Le (1999) Primary hyperparathyroidism: short-term changes in bone remodeling and bone mineral density following parathyroidectomy. Bone 25:237–244

    PubMed  CAS  Google Scholar 

  • Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40

    PubMed  CAS  Google Scholar 

  • Clarke BL, Ebeling PR, Jones JD, Wahner HW, O’Fallon WM, Riggs BL, Fitzpatrick LA (1996) Changes in quantitative bone histomorphometry in aging healthy men. J Clin Endocrinol Metab 81:2264–2270

    PubMed  CAS  Google Scholar 

  • Cohn SH, Abesamis C, Yasumura S, Aloia JF, Zanzi I, Ellis KJ (1977) Comparative skeletal mass and radial bone mineral content in black and white women. Metabolism 26:171–178

    PubMed  CAS  Google Scholar 

  • Cooper GS (1999) Genetic studies of osteoporosis: what have we learned? J Bone Miner Res 14:1646–1648

    PubMed  CAS  Google Scholar 

  • Cosman F, Nieves J, Horton J, Shen V, Lindsay R (1994) Effects of estrogen on response to edetic acid infusion in postmenopausal osteoporotic women. J Clin Endocrinol Metab 78:939–943

    PubMed  CAS  Google Scholar 

  • Croucher PI, Garrahan NJ, Mellish RW, Compston JE (1991) Age-related changes in resorption cavity characteristics in human trabecular bone. Osteoporosis Int 4:257–261

    Google Scholar 

  • Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, Ettinger B (1998) Endogenous hormones and the risk of hip and vertebral fractures among older women. N Engl J Med 339:733–738

    PubMed  CAS  Google Scholar 

  • Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. N Engl J Med 332:767–773

    PubMed  CAS  Google Scholar 

  • Cunningham J (2005) Posttransplantation bone disease. Transplantation 79:629–634

    PubMed  Google Scholar 

  • Delmas PD, Garnero P (1996) Utility of biochemical markers of bone turnover in osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, San Diego, pp 1075–1088

    Google Scholar 

  • Dempster DW (2000) The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 15:20–23

    PubMed  CAS  Google Scholar 

  • DeVernejoul MC, Bielakoff J, Herve M, Gueris J, Hott M, Modrowski D, Kuntz D, Miravet L, Ryckewaert A (1983) Evidence for defective osteoblastic function. Clin Orthop Rel Res 179:107–115

    Google Scholar 

  • Donovan MA, Dempster D, Zhou H, McMahon DJ, Fleischer J, Shane E (2005) Low bone formation in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 90:3331–3336

    PubMed  CAS  Google Scholar 

  • Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL (1988) Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab 67:741–748

    PubMed  CAS  Google Scholar 

  • Eastell R, Yergey AL, Vieira NE, Cedel SL, Kumar R, Riggs BL (1991) Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women; evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J Bone Miner Res 6:125–132

    PubMed  CAS  Google Scholar 

  • Eastell R, Reid DM, Compston J, Cooper C, Fogelman I, Francis RM, Hosking DJ, Purdie DW, Ralston SH, Reeve J, Russell RGG, Stevenson JC, Torgerson DJ (1998) A UK consensus group on management of glucocorticoid-induced osteoporosis: an update. J Intern Med 244:271–292

    PubMed  CAS  Google Scholar 

  • Ebeling PR, Peterson JM, Riggs BL (1992) Utility of type I procollagen propeptide assays for assessing abnormalities in metabolic bone diseases. J Bone Miner Res 7:1243–1250

    PubMed  CAS  Google Scholar 

  • Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1120–1122

    Google Scholar 

  • Elder G (2002) Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res 17:2094–2105

    PubMed  CAS  Google Scholar 

  • Endres DB, Morgan CH, Garry PJ, Omdahl JL (1987) Agerelated changes in serum immunoreactive parathyroid hormone and its biological action in healthy men and women. J Clin Endocrinol Metab 65:724

    PubMed  CAS  Google Scholar 

  • El Maghraoui A (2004) Osteoporosis and ankylosing spondylitis. Joint Bone Spine 71:291–295

    PubMed  Google Scholar 

  • Epstein H, Poser J, Mc Clintock R, Johnston CC, Bryce G, Hui S (1984) Differences in serum bone GLA protein with age and sex. Lancet i:307–310

    Google Scholar 

  • Erben RG, Eberle J, Stahr K, Goldberg M (2000) Androgen deficiency induces high turnover osteopenia in aged male rats: a sequential histomorphometric study. J Bone Miner Res 15:1085–1098

    PubMed  CAS  Google Scholar 

  • Eriksen EF (2002) Primary hyperparathyroidism: lessons from bone histomorphometry. J Bone Miner Res 17: N95–N97

    PubMed  Google Scholar 

  • Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560

    PubMed  CAS  Google Scholar 

  • Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley WF (1987) Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Med 106:354–361

    PubMed  CAS  Google Scholar 

  • Francis RM, Peacock M, Marshall DH, Horsman A, Aaron JE (1989) Spinal osteoporosis in men. Bone Miner 5:347–357

    PubMed  CAS  Google Scholar 

  • Gallagher JC, Kinyamu HK, Fowler SE, Dawson-Hughes B, Dalsky GP, Sherman SS (1998) Calciotropic hormones and bone markers in the elderly. J Bone Miner Res 13:475–482

    PubMed  CAS  Google Scholar 

  • Garnero P, Shih WJ, Gineyts E, Karpf DB, Delmas PD (1994) Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 79:1693–1700

    PubMed  CAS  Google Scholar 

  • Gennari C, Agnusdei D, Nardi P, Civitelli R (1990) Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 71:1288–1293

    PubMed  CAS  Google Scholar 

  • Gennari L, Merlotti D, Martini G, Gonnelli S, Franci B, Campagna S, Lucani B, Dal Canto N, Valenti R, Gennari C, Nuti R (2003) Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab 88:5327–5333

    PubMed  CAS  Google Scholar 

  • Geusens P, Milisen K, Dejaeger E, Boonen S (2003) Falls and fractures in postmenopausal women: a review. J Br Menopause Soc 9:101–106

    PubMed  Google Scholar 

  • Gillberg P, Johansson AG, Ljunghall S (1999) Decreased estradiol levels and free androgen index and elevated sex hormone-binding globulin levels in male idiopathic osteoporosis. Calcif Tissue Int 64:209–213

    PubMed  CAS  Google Scholar 

  • Glowacki J (1999) Cellular models of human aging. In: Rosen CJ, Glowacki J, Bilezikian JP (eds) The aging skeleton. Academic, San Diego, pp 59–73

    Google Scholar 

  • Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HAP (2004) Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam study. J Clin Endocrinol Metab 89:3261–3269

    PubMed  CAS  Google Scholar 

  • Goldring SR (1999) Osteoporosis and rheumatic diseases. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams and Wilkins, Philadelphia, pp 313–315

    Google Scholar 

  • Graninger M, Dirnberger E, Kainberger F, Bernecker P, Graninger W, Smolen J, Pietschmann P (1998) Comparison of spinal and femoral dual energy X-ray absorptiometry (DXA) in men with primary and secondary osteoporosis. Osteologie 7:48–52

    Google Scholar 

  • Greendale GA, Edelstein S, Barrett-Connor E (1997) Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res 12:1833–1843

    PubMed  CAS  Google Scholar 

  • Grisar J, Bernecker PM, Aringer M, Redlich K, Sedlak M, Wolozcszuk W, Spitzauer S, Grampp S, Kainberger F, Ebner W, Smolen JS, Pietschmann P (2002) Ankylosing spondylitis, psoriatic arthritis, and reactive arthritis show increased bone resorption, but differ with regard to bone formation. J Rheumatol 29:1430–1436

    PubMed  Google Scholar 

  • Heaney RP, Recker RR, Saville PD (1978) Menopausal changes in calcium balance performance. J Lab Clin Med 92:953–963

    PubMed  CAS  Google Scholar 

  • Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009

    PubMed  CAS  Google Scholar 

  • Hermann M, Berger P (1999) Hormone replacement in the aging male? Exp Gerontol 34:923–933

    PubMed  CAS  Google Scholar 

  • Hermann AP, Brot C, Gram J, Kolthoff N, Mosekilde L (2000) Premenopausal smoking and bone density in 2015 perimenopausal women. J Bone Miner Res 15:780–787

    PubMed  CAS  Google Scholar 

  • Hills E, Dunstan CR, Wong SYP, Evans RA (1989) Bone histology in young adult osteoporosis. J Clin Pathol 42:391–397

    PubMed  CAS  Google Scholar 

  • Hruska KA, Teitelbaum SL (1995) Renal osteodystrophy. N Engl J Med 333:166–174

    PubMed  CAS  Google Scholar 

  • Hutchinson AJ, Whitehouse RW, Boulton HF, Adams JE, Mawer EB, Freemont TJ, Gokal R (1993) Correlation of bone histology with parathyroid hormone, vitamin D3, and radiology in end-stage renal disease. Kidney Int 44:1071–1077

    Google Scholar 

  • Inaba M (2004) Secondary osteoporosis: thyrotoxicosis, rheumatoid arthritis, and diabetes mellitus. J Bone Miner Metab 22:287–292

    PubMed  Google Scholar 

  • Jackson JA, Kleerekoper M, Parfitt M, Rao DS, Villanueva AR, Frame B (1986) Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. J Clin Endocrinol Metab 65:53–58

    Google Scholar 

  • Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732–1740

    PubMed  CAS  Google Scholar 

  • Kahn A, Gibbons R, Perkins S, Gazit D (1995) A hypothesis and initial assessment in mice. Clin Orthop 313:69–75

    PubMed  Google Scholar 

  • Kajkenova O, Lecka-Czernik B, Gubrij I, Hauser SP, Takahashi K, Parfitt AM, Jilka RL, Manolagas SC, Lipschitz DA (1997) Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 12:1772–1779

    PubMed  CAS  Google Scholar 

  • Kelly PJ, Pocock NA, Sambrock PN, Eisman JA (1990) Dietary calcium, sex hormones, and bone mineral density in men. Br Med J 300:1361–1364

    CAS  Google Scholar 

  • Kelly PJ, Hopper LJ, Macaskill NA, Pocock PN, Sambrook PN, Eisman JA (1991) Genetic determinants of collagen synthesis and degradation: further evidence of genetic regulation of bone turnover. J Clin Endocrinol Metab 78:1461–1466

    Google Scholar 

  • Kerschan-Schindl K, Strametz-Juranek J, Heinze G, Grampp S, Bieglmayer C, Pacher R, Maurer G, Fialka-Moser V, Pietschmann P (2003) Pathogenesis of bone loss in heart transplant candidates and recipients. J Heart Lung Transplant 22:843–850

    PubMed  Google Scholar 

  • Kerschan-Schindl K, Mitterbauer M, Fureder W, Kudlacek S, Grampp S, Bieglmayer C, Fialka-Moser V, Pietschmann P, Kalhs P (2004) Bone metabolism in patients more than five years after bone marrow transplantation. Bone Marrow Transplant 34:491–496

    PubMed  CAS  Google Scholar 

  • Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    PubMed  CAS  Google Scholar 

  • Khosla S, Melton LJ III, Wermers RA, Crowson CS, O’Fallon WM, Riggs BL (1999) Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res 14:1700–1707

    PubMed  CAS  Google Scholar 

  • Klaushofer K, Hoffmann O, Gleispach H, Leis HJ, Czerwenka E, Koller K, Peterlik M (1989) Bone resorbing activity of thyroid hormones is related to prostaglandin production in neonatal mouse calvaria. J Bone Miner Res 4:305

    PubMed  CAS  Google Scholar 

  • Koh LKH, Bauer DC, Forsyth BA, Gore LR, Vogt MT, Cummings SR (1997) PTH in postmenopausal osteoporotic women. J Bone Miner Res 12:S166

    Google Scholar 

  • Kotzmann H, Bernecker P, Hübsch T, Pietschmann P, Woloszczuk W, Svoboda T, Geyer G, Luger A (1993) Bone mineral density and parameters of bone metabolism in patients with acromegaly. J Bone Miner Res 8:459–465

    PubMed  CAS  Google Scholar 

  • Krall EA, Dawson-Hughes B (1999) Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res 14:215–220

    PubMed  CAS  Google Scholar 

  • Kroger H, Kotaniemi A, Kroger L, Alhava E (1993) Development of bone mass and bone density of the spine and femoral neck — a prospective study of 65 children and adolescents. Bone Miner 23:171–182

    PubMed  CAS  Google Scholar 

  • Kushida K, Takahashi M, Kawana K (1995) Comparison of markers for bone formation and resorption in premenopausal and postmenopausal subjects, and osteoporosis patients. J Clin Endocrinol Metab 80:2447–2450

    PubMed  CAS  Google Scholar 

  • Lakatos P (2003) Thyroid hormones: beneficial or deleterious for bone? Calcif Tissue Int 73:205–209

    PubMed  CAS  Google Scholar 

  • Lang I, Schernthaner G, Pietschmann P, Kurz R, Stephenson JM, Templ H (1987) Effects of sex and age on growth hormone response to growth hormone-releasing hormone in healthy individuals. J Clin Endocrinol Metab 65:535–540

    PubMed  CAS  Google Scholar 

  • LeBoff MS (1997) Metabolic bone disease. In: Kelley WN, Harry ED, Ruddy S, Sledge CB (eds) Textbook of rheumatology. Saunders, Philadelphia, pp 1563–1580

    Google Scholar 

  • LeBoff MS, Glowacki J (1999) Sex steroids, bone and aging. In: Rosen CJ, Glowacki J, Bilezikian JP (eds) The aging skeleton. Academic, San Diego, pp 159–174

    Google Scholar 

  • Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19

    PubMed  CAS  Google Scholar 

  • Lernbass I, Wutzl A, Grisar J, Schett G, Redlich K, Spitzauer S, Grampp S, Imhof H, Peterlik M, Pietschmann P (2002) Quantitative ultrasound in the assessment of bone status of patients suffering from rheumatic diseases. Skeletal Radiol 31:270–276

    PubMed  CAS  Google Scholar 

  • Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17

    PubMed  CAS  Google Scholar 

  • Ljunghall S, Johansson AG, Burman P, Kämpe O, Lindh E, Karlsson FA (1992) Low plasma levels of insulin-like growth factor (IGF-I) in male patients with idiopathic osteoporosis. J Intern Med 232:59–64

    PubMed  CAS  Google Scholar 

  • Lormeau C, Soudan B, d’Herbomez M, Pigny P, Duquesnoy B, Cortet B (2004) Sex hormone-binding globulin, estradiol, and bone turnover markers in male osteoporosis. Bone 34:933–939

    PubMed  CAS  Google Scholar 

  • Lu PW, Briody JN, Ogle GD, Morley K, Humphries IR, Allen J, Howman-Giles R, Sillence D, Cowell CT (1994) Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 9:1451–1458

    PubMed  CAS  Google Scholar 

  • Lukert BP (1999) Glucocorticoid-induced osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams and Wilkins, Philadelphia, pp 292–296

    Google Scholar 

  • Makluf HA, Mueller SM, Mizuno S, Glowacki J (2000) Agerelated decline in osteoprotegerin expression by human bone marrow cells cultured in three dimensional collage sponges. Biochem Biophys Res Commun 268:669–672

    Google Scholar 

  • Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH III (1990) Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 52:878–888

    PubMed  CAS  Google Scholar 

  • Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93:799–808

    PubMed  CAS  Google Scholar 

  • Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, Higuchi K, Kohno A, Yonezu T, Utani A, et al. (1986) Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol 125:276–283

    PubMed  CAS  Google Scholar 

  • McKane WR, Khosla S, Burritt MF, Kao PC, Wilson DM, Ory SJ, Riggs BL (1995) Mechanism of renal conservation with estrogen replacement therapy in women in early postmenopause — a clinical research center study. J Clin Endocrinol Metab 80:3458–3464

    PubMed  CAS  Google Scholar 

  • McKenna MJ (1992) Differences in vitamin D status between countries in young adults and the elderly. Am J Med 93:69–77

    PubMed  CAS  Google Scholar 

  • Mee AP, Dixon JA, Hoyland JA, Davies M, Selby PL, Mawer EB (1998) Detection of canine distemper virus in 100% of Paget’s disease samples by in situ-reverse transcriptase-polymerase chain reaction. Bone 23:171–175

    PubMed  CAS  Google Scholar 

  • Melton LJ III, Riggs BL (1988) Clinical spectrum. In: Riggs BL, Melton LJ III (eds) Osteoporosis: etiology, diagnosis and management. Raven Press, New York, pp 155

    Google Scholar 

  • Melton LJ III (1995) How many women have osteoporosis now? J Bone Miner Res 10:175–177

    PubMed  Google Scholar 

  • Menaa C, Barsony J, Reddy SV, Cornish J, Cundy T, Roodman GD (2000) 1,25-Dihydroxyvitamin D3 hypersensitivity of osteoclast precursors from patients with Paget’s disease. J Bone Miner Res 15:228–236

    PubMed  CAS  Google Scholar 

  • Mikosch P (2004) Die Knochenszintigraphie in der Diagnostik metabolischer Knochenerkrankungen. Wien Med Wochenschr 154:119–126

    PubMed  Google Scholar 

  • Mitringer A, Pietschmann P (2002) Osteoporose bei prämenopausalen Frauen. Wien Med Wochenschr 1152:586–590

    Google Scholar 

  • Morrison NA, Yeoman R, Kelly PJ, Eisman JA (1992) Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphisms and circulating osteocalcin. Proc Natl Acad Sci USA 89:6665–6669

    PubMed  CAS  Google Scholar 

  • Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts TV, Nguyen TV, Sambrook PN, Eisman JA (1994) Prediction of bone density by vitamin D receptor alleles. Nature 367:284–287

    PubMed  CAS  Google Scholar 

  • Murphy S, Khaw K, Cassidy A, Compston JE (1993) Sex hormones and bone mineral density in elderly men. Bone Miner 20:133–140

    PubMed  CAS  Google Scholar 

  • Neale SD, Smith R, Wass JA, Athanasou NA (2000) Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D(3) and RANKL. Bone 27:409–416

    PubMed  CAS  Google Scholar 

  • Need AG, Morris HA, Horowitz M, Scopacasa F, Nordin BEC (1998) Intestinal calcium absorption in men with spinal osteoporosis. Clin Endocrinol (Oxf) 48:163–168

    CAS  Google Scholar 

  • Nguyen TV, Sambrook PN, Eisman JA (1998) Bone loss, physical activity, and weight change in elderly women: the Dubbo osteoporosis epidemiology study. J Bone Miner Res 13:1458–1467

    PubMed  CAS  Google Scholar 

  • Nordin BEC, Aaron J, Speed R, Francis RM, Makins N (1984) Bone formation and resorption as the determinants of trabecular bone volume in normal osteoporotic men. Scott Med J 29:171–175

    PubMed  CAS  Google Scholar 

  • Nordin BEC, Need AG, Morris HA, Horowitz M, Robertson WG (1991) Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 72:401–407

    PubMed  CAS  Google Scholar 

  • Obermayer-Pietsch BM, Lange U, Tauber G, Fruhauf G, Fahrleitner A, Dobnig H, Hermann J, Aglas F, Teichmann J, Neeck G, Leb G (2003) Vitamin D receptor initiation codon polymorphism, bone density and inflamatory activity of patients with ankylosing spondylitis. Osteoporos Int 14:995–1000

    PubMed  CAS  Google Scholar 

  • Obermayer-Pietsch BM, Bonelli CM, Walter DE, Kuhn RJ, Fahrleitner-Pammer A, Berghold A, Goessler W, Stephan V, Dobnig H, Leb G, Renner W (2004) Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J Bone Miner Res 19:42–47

    PubMed  Google Scholar 

  • Obermayer-Pietsch BM (2006) Genetics of osteoporosis. Wien Med Wochenschr 156:162–167

    PubMed  Google Scholar 

  • Omdahl JL, Garry PJ, Hunsaker LA, Hunt WC, Goodwin JS (1982) Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr 36:1225–1233

    PubMed  CAS  Google Scholar 

  • O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European vertebral osteoporosis study. J Bone Miner Res 11:1010–1018

    PubMed  CAS  Google Scholar 

  • Ongphiphadhanakul B, Rajatanavin R, Chanprasertyothin S, Piaseu N, Chailurkit L (1998) Serum oestradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin Endocrinol (Oxf) 49:803–809

    CAS  Google Scholar 

  • Orwoll ES, Klein RF (1996) Osteoporosis in men: epidemiology, pathophysiology, and clinical characterization. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, San Diego, pp 745–784

    Google Scholar 

  • Orwoll ES, Meier DE (1986) Alterations in calcium, vitamin D, and parathyroid hormone physiology in normal men with aging: relationship to the development of senile osteopenia. J Clin Endocrinol Metab 63:1262

    PubMed  CAS  Google Scholar 

  • Oursler MJ, Osodoby P, Pyfferoen J, Riggs PL, Spelsberg TC (1991) Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 88:6613–6617

    PubMed  CAS  Google Scholar 

  • Pacifici R, Rifas L, Teitelbaum S, Slaptopolsky E, McCracken R, Bergfeld M, Lee W, Avioli LV, Peck WA (1987) Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci USA 84:4616–4620

    PubMed  CAS  Google Scholar 

  • Palle S, Chappard D, Vico L, Riffat G, Alexandre C (1989) Evaluation of the osteoclastic population in iliac crest biopsies from 36 normal subjects: a histoenzymologic and histomorphometric study. J Bone Miner Res 4:501–506

    PubMed  CAS  Google Scholar 

  • Parfitt AM (2004) The attainment of peak bone mass: what is the relationship between muscle growth and bone growth? Bone 34:767–770

    PubMed  CAS  Google Scholar 

  • Peris P, Guanabens N (1996) Male osteoporosis. Curr Opin Rheumatol 8:357–364

    PubMed  CAS  Google Scholar 

  • Perkins SL, Gibbons R, Kling S, Kahn AJ (1994) Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone 15:65–72

    PubMed  CAS  Google Scholar 

  • Perry HM III, Fallon MD, Bergfeld M, Teitelbaum SL, Avioli LV (1982) Osteoporosis in young men: a syndrome of hypercalciuria and accelerated bone turnover. Arch Intern Med 142: 1295–1298

    PubMed  Google Scholar 

  • Pfeilschifter J, Diel I, Pilz U, Brunotte K, Naumann A, Ziegler R (1993) Mitogenic responsiveness of human bone cells in vitro to hormone and growth factors decreases with age. J Bone Miner Res 8:707–717

    PubMed  CAS  Google Scholar 

  • Pietschmann P, Peterlik M (1999) Pathophysiologie der Osteoporose. Wien Med Wochenschr 16/17:454–462

    Google Scholar 

  • Pietschmann P, Woloszcuzk W, Pietschmann H (1990) Increased serum osteocalcin levels in elderly females with vitamin D deficiency. Exp Clin Endocrinol 95:275–278

    PubMed  CAS  Google Scholar 

  • Pietschmann P, Niederle B, Anvari A, Woloszczuk W (1991) Serum osteocalcin levels in primary hyerparathyroidism. Klin Wochenschr 69:351–353

    PubMed  CAS  Google Scholar 

  • Pietschmann F, Breslau NA, Pak CY (1992) Reduced vertebral bone density in hypercalciuric nephrolithiasis. J Bone Miner Res 7:1383–1388

    PubMed  CAS  Google Scholar 

  • Pietschmann P, Kudlacek S, Grisar J, Spitzauer S, Woloszczuk W, Willvonseder R, Peterlik M (2001) Bone turnover markers and sex hormones in men with idiopathic osteoporosis. Eur J Clin Invest 31:444–451

    PubMed  CAS  Google Scholar 

  • Pietschmann P, Gollob E, Brosch S, Hahn P, Kudlacek S, Willheim M, Woloszczuk W, Peterlik M, Tragl KH (2003) The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism. Exp Gerontol 38:1119–1127

    PubMed  CAS  Google Scholar 

  • Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80:706–710

    PubMed  CAS  Google Scholar 

  • Prince R, Dick I, Devine A, Price R, Gutteridge D, Kerr D, Criddle A, Garcia-Webb P, St John A (1995) The effects of menopause and age on calcitropic hormones: a cross-sectional study of 655 healthy women aged 35–90. J Bone Miner Res 10:835–842

    PubMed  CAS  Google Scholar 

  • Quarto R, Thomas D, Linag CT (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56:123–129

    PubMed  CAS  Google Scholar 

  • Quesada JM, Coopmans W, Ruiz B, Aljama P, Jans I, Bouillon R (1992) Influence of vitamin D on parathyroid function in the elderly. J Clin Endocrinol Metab 75:494–501

    PubMed  CAS  Google Scholar 

  • Rapado A, Hawkins F, Sobrinho L, Diaz-Curiel M, Galvao-Telles A, Arver S, Melo Gomes J, Mazer N, Garcia e Costa J, Horcajada C, Lopez-Gavilanes E, Mascarenhas M, Papapietro K, Lopez Alvarez MB, Pereira MC, Martinez, G, Valverde I, Garcia JJ, Carballal JJ, Garcia I (1999) Bone mineral density and androgen levels in elderly males. Calcif Tissue Int 65:417–21

    PubMed  CAS  Google Scholar 

  • Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hinders S (1988) Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res 3:133–144

    PubMed  CAS  Google Scholar 

  • Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB (1992) Bone gain in young adult women. JAMA 268:2403–2408

    PubMed  CAS  Google Scholar 

  • Reddy SV, Menaa C, Singer FR, Demulder A, Roodman GD (1999) Cell biology of Paget’s disease. J Bone Miner Res 14:3–8

    PubMed  Google Scholar 

  • Redlich K, Ziegler S, Kiener HP, Spitzauer S, Stohlawetz P, Bernecker P, Kainberger F, Grampp S, Kudlacek S, Woloszczuk W, Smolen JS, Pietschmann P (2000) Bone mineral density and biochemical parameters of bone metabolism in female patients with systemic lupus erythematosus. Ann Rheum Dis 59:308–310

    PubMed  CAS  Google Scholar 

  • Resch H, Pietschmann P, Woloszczuk W, Krexner E, Bernecker P, Willvonseder R (1992) Bone mass and biochemical parameters of bone metabolism in men with spinal osteoporosis. Eur J Clin Invest 22:542–545

    PubMed  CAS  Google Scholar 

  • Resch H, Pietschmann P, Kudlacek P, Woloszczuk W, Krexner E, Bernecker P, Willvonseder R (1994) Influence of sex and age on biochemical bone metabolism parameters. Miner Electrolyte Metab 20:117–121

    PubMed  CAS  Google Scholar 

  • Riggs BL, Melton LJ III (1983) Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 75:899–901

    PubMed  CAS  Google Scholar 

  • Riggs BL, Khosla S, Melton LJ III (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    PubMed  CAS  Google Scholar 

  • Riggs BL, Khosla S, Atkinson EJ, Dunstan CR, Melton LJ III (2003) Evidence that type I osteoporosis results from enhanced responsiveness of bone to estrogen deficiency. Osteoporos Int 14:728–733

    PubMed  CAS  Google Scholar 

  • Riggs BL, Melton Iii LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    PubMed  Google Scholar 

  • Rodin A, Murby B, Smith MA, Caleffi M, Fentiman I, Chapman MG, Fogelman I (1990) Premenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone 11:1–5

    PubMed  CAS  Google Scholar 

  • Roholl PJM, Blauw E, Zurcher C, Dormans JAMA, Theuns HM (1994) Evidence for a diminished maturation of proteoblasts into osteoblasts during aging in rats: an ultra-structural analysis. J Bone Miner Res 9:355–366

    PubMed  CAS  Google Scholar 

  • Roodman GD, Windle JJ (2005) Paget disease of bone. J Clin Invest 115:200–208

    PubMed  CAS  Google Scholar 

  • Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K (2001) Alendroante increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29(2): 185–91

    PubMed  CAS  Google Scholar 

  • Rosen T, Hansson T, Granhed H, Szucs J, Bengtson BA (1993) Reduced bone mineral content in adult patients with growth hormone deficiency. Acta Endocrinol (Copenh) 129:201–206

    PubMed  CAS  Google Scholar 

  • Schett G, Kiechl S, Redlich K, Oberhollenzer F, Weger S, Egger G, Mayr A, Jocher J, Xu Q, Pietschmann P, Teitelbaum S, Smolen J, Willeit J (2004) Soluble RANKL and risk of nontraumatic fracture. JAMA 291:1108–1113

    PubMed  CAS  Google Scholar 

  • Schiller C, Gruber R, Redlich K, Ho GM, Gober HJ, Katzgraber F, Willheim M, Hoffmann O, Pietschmann P, Peterlik M (1997) 17β-estradiol antagonizes effects of 1α,25-dihydroxyvitamin D3 on interleukin-6 production and osteoclast-like cell formation in mouse bone marrow primary cultures. Endocrinology 138:4567–4571

    PubMed  CAS  Google Scholar 

  • Schlemmer A, Hassager C, Pedersen BJ, Christiansen C (1994) Posture, age, menopause, and osteopenia do not influence the circadian variation in the urinary excretion of pyridinium crosslinks. J Bone Miner Res 9:1883–1888

    PubMed  CAS  Google Scholar 

  • Seeman E (1996) The effects of tobacco and alcohol use on the bone. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, San Diego, pp 577–597

    Google Scholar 

  • Seeman E (2003a) Periosteal bone formation-a neglected determinant of bone strength. N Engl J Med 349:4

    Google Scholar 

  • Seeman E (2003b) Bone quality. Osteoporos Int 14:3–7

    PubMed  Google Scholar 

  • Seibel MJ, Woitge H, Scheidt-Nave C, Leidig-Bruckner G, Duncan A, Nicol P, Ziegler R, Robins SP (1994) Urinary hydroxypyridinium crosslinks of collagen in population-based screening for overt vertebral osteoporosis: results of a pilot study. J Bone Miner Res 9:1433–1440

    PubMed  CAS  Google Scholar 

  • Shaker JL, Lukert BP (2005) Osteoporosis associated with excess glucocorticoids. Endocrinol Metab Clin North Am 34:341–356

    PubMed  CAS  Google Scholar 

  • Shane E (1999) Transplantation osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams and Wilkins, Philadelphia, pp 296–301

    Google Scholar 

  • Sherman SS, Hollis BW, Tobin JD (1990) Vitamin D status and related parameters in a healthy population: the effects of age, sex, and season. J Clin Endocrinol Metab 71:405–413

    PubMed  CAS  Google Scholar 

  • Shuto T, Kukita T, Hirata M, Jimi E, Koga T (1994) Dexamethasone stimulates osteoclast-like cell formation by inhibiting granulocyte-macrophage colony-stimulating factor production in mouse bone marrow cultures. Endocrinology 134:1121–1126

    PubMed  CAS  Google Scholar 

  • Sieghart S (2004) Osteitis deformans-Paget’s disease. Wien Med Wochenschr 154:97–101

    PubMed  Google Scholar 

  • Silva MJ, Brodt MD, Ko M, Abu-Amer Y (2005) Impaired marrow osteogenesis is associated with reduced endocortical bone formation but does not impair periosteal bone formation in long bones of SAMP6 mice. J Bone Miner Res 20:419–427

    PubMed  Google Scholar 

  • Singer FR (1999) Update on the viral etiology of Paget’s disease of bone. J Bone Miner Res 14:29–33

    PubMed  Google Scholar 

  • Siris E (1999) Paget’s disease of bone. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams and Wilkins, Philadelphia, pp 415–425

    Google Scholar 

  • Slemenda CW, Longcope C, Zhou L, Hui, SL, Peacock M, Johnston CC (1997) Sex steroids and bone mass in older men. J Clin Invest 100:1755–1759

    PubMed  CAS  Google Scholar 

  • Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in man. N Engl J Med 331:1056–1061

    PubMed  CAS  Google Scholar 

  • Stein MS, Scherer SC, Walton SL, Gilbert RE, Ebeling PR, Flicker L, Wark JD (1996) Risk factors for secondary hyperparathyroidism in a nursing home population. Clin Endocrinol (Oxf) 44:375–383

    CAS  Google Scholar 

  • Stepan JJ, Lachmann M, Zverina J, Pacovsky V, Baylink DJ (1989) Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab 69:523–527

    PubMed  CAS  Google Scholar 

  • Suh TT, Lyles KW (2003) Osteoporosis considerations in the frail elderly. Curr Opin Rheumatol 15:481–486

    PubMed  Google Scholar 

  • Suwanwalaikorn S, Baran D (1996) Thyroid hormone and the skeleton. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, San Diego, pp 855–861

    Google Scholar 

  • Toss G, Almqvist S, Larsson L, Zetterqvist H (1980) Vitamin D deficiency in welfare institutions for the aged. Acta Med Scand 208:87–89

    PubMed  CAS  Google Scholar 

  • Tudor-Locke C, McColl RS (2000) Factors related to variation in premenopausal bone mineral status: a health promotion approach. Osteoporosis Int 11:1–24

    CAS  Google Scholar 

  • Turner RT (2000) Skeletal response to alcohol. Alcohol Clin Exp Res 24:1693–1701

    PubMed  CAS  Google Scholar 

  • Uebelhart D, Schlemmer A, Johansen JS, Gineyts E, Christiansen K, Delmas PD (1991) Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J Clin Endocrinol Metab 72:367–373

    PubMed  CAS  Google Scholar 

  • Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K (1997) Triiodothyreonine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c-fos/c-jun, and induction of osteocalcin expression. Calif Tissue Int 61:404–411

    CAS  Google Scholar 

  • Vedi S, Compston JE, Webb A, Tighe JR (1982) Histomorphometric analysis of bone biopsies from the iliac crest of normal British subjects. Metab Bone Dis Relat Res 4:231–236

    PubMed  CAS  Google Scholar 

  • Vermeulen A (2000) Der senile Hypogonadismus beim Mann und seine hormonelle Substitutionstherapie. Acta Med Aust 27:11–17

    CAS  Google Scholar 

  • Worsfold M, Sharp CA, Davie MJ (1988) Serum osteocalcin and other indices of bone formation: an 8-decade population study in healthy men and women. Clin Chim Acta 178:225–236

    PubMed  CAS  Google Scholar 

  • Wosje KS, Binkley TL, Fahrenwald NL, Specker BL (2000) High bone mass in a female Hutterite population. J Bone Miner Res 15:1429–1436

    PubMed  CAS  Google Scholar 

  • Zajickova K, Zofkova I (2003) Osteoporosis: genetic analysis of multifactorial disease. Endocr Regul 37:31–44

    PubMed  CAS  Google Scholar 

  • Zerwekh JE, Sakhaee K, Breslau NA, Gottschalk F, Park CYC (1992) Impaired bone formation in male idiopathic osteoporosis: further reduction in the presence of concomitant hypercalciuria. Osteoporosis Int 2:128–134

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pietschmann, P., Gruber, R., Peterlik, M. (2008). Pathophysiology and Aging of Bone. In: Grampp, S. (eds) Radiology of Osteoporosis. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68604-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68604-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25888-9

  • Online ISBN: 978-3-540-68604-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics