Skip to main content

pQCT: Peripheral Quantitative Computed Tomography

  • Chapter
Radiology of Osteoporosis

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Peripheral quantitative computed tomography (pQCT) for the forearm was introduced shortly after CT for medical imaging and several years before the development of spinal QCT (Genant and Boyd 1977; Rüegsegger 1974), as a volumetric extension to Cameron’s projectional technique for bone mineral measurements (Cameron and Sorenson 1963). Compared to single photon absorptiometry (SPA), the advantages of pQCT are obvious: separate assessment of trabecular and cortical bone and determination of true volumetric density instead of areal bone mineral density (BMD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami S, Gatti D, Braga V, Bianchini D, Rossini M (1999) Sitespecific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women [see comments]. J Bone Miner Res 14:120–124

    PubMed  CAS  Google Scholar 

  • Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, McKay HA (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17:1241–1251

    PubMed  CAS  Google Scholar 

  • Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363

    PubMed  CAS  Google Scholar 

  • Augat P, Fan B, Lane NE, Lang TF, LeHir P, Lu Y, Uffmann M, Genant HK (1998a) Assessment of bone mineral at appendicular sites in females with fractures of the proximal femur. Bone 22:395–402

    PubMed  CAS  Google Scholar 

  • Augat P, Gordon CL, Lang TF, Iida H, Genant HK (1998b) Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Biol 43:2873–2883

    PubMed  CAS  Google Scholar 

  • Baran DT, Faulkner KG, Genant HK, Miller PD, Pacifici R (1997) Diagnosis and management of osteoporosis: guidelines for the utilization of bone densitometry. Calcif Tissue Int 61:433–440

    PubMed  CAS  Google Scholar 

  • Binkley TL, Specker BL (2000) pQCT measurement of bone parameters in young children: validation of technique. J Clin Densitom 3:9–14

    PubMed  CAS  Google Scholar 

  • Bjarnason NH, Bjarnason K, Haarbo J, Rosenquist C, Christiansen C (1996) Tibolone: prevention of bone loss in late postmenopausal women [see comments]. J Clin Endocrinol Metab 81:2419–2422

    PubMed  CAS  Google Scholar 

  • Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348:1535–1541

    PubMed  CAS  Google Scholar 

  • Block JE, Smith R, Glüer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4:249–257

    PubMed  CAS  Google Scholar 

  • Boonen S, Cheng XG, Nijs J, Nicholson PH, Verbeke G, Lesaffre E, Aerssens J, Dequeker J (1997) Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int 60:164–170

    PubMed  CAS  Google Scholar 

  • Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    PubMed  CAS  Google Scholar 

  • Bouxsein ML, Parker RA, Greenspan SL (1999) Forearm bone mineral density cannot be used to monitor response to alendronate therapy in postmenopausal women. Osteoporos Int 10:505–509

    PubMed  CAS  Google Scholar 

  • Braun MJ, Meta MD, Schneider P, Reiners C (1998) Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys Med Biol 43:2279–2294

    PubMed  CAS  Google Scholar 

  • Butz S, Weuster C, Scheidt-Nave C, Geotz M, Ziegler R (1994) Forearm BMD as measured by peripheral quantitative computed tomography pQCT in a German reference population. Osteoporos Int 4:179–184

    PubMed  CAS  Google Scholar 

  • Cameron JR, Sorenson JA (1963) Measurement of bone mineral in vivo: an improved method. Science 142:230–232

    PubMed  CAS  Google Scholar 

  • Capozza R, Ma YF, Ferretti JL, Meta M, Alippi R, Zanchetta J, Jee WS (1995) Tomographic (pQCT) and biomechanical effects of hPTH(1–38) on chronically immobilized or overloaded rat femurs. Bone 17:233S–239S

    PubMed  CAS  Google Scholar 

  • Cortet B, Bourel P, Dubois P, Boutry N, Cotten A, Marchandise X (1998) CT scan texture analysis of the distal radius: infl uence of age and menopausal status. Rev Rhum Engl Ed 65:109–118

    PubMed  CAS  Google Scholar 

  • Cortet B, Dubois P, Boutry N, Bourel P, Cotten A, Marchandise X (1999) Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int 9:410–419

    PubMed  CAS  Google Scholar 

  • Dambacher MA, Ittner J, Ruegsegger P (1986) Long-term fl uoride therapy of postmenopausal osteoporosis. Bone 7:199–205

    PubMed  CAS  Google Scholar 

  • Duppe H, Gardsell P, Nilsson B, Johnell O (1997) A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 60:171–174

    PubMed  CAS  Google Scholar 

  • Eastell R (1998) Treatment of postmenopausal osteoporosis. N Engl J Med 338:736–746

    PubMed  CAS  Google Scholar 

  • Eastell R, Riggs BL, Wahner HW, O’Fallon WM, Amadio PC, Melton LJD (1989) Colles’ fracture and bone density of the ultradistal radius. J Bone Miner Res 4:607–613

    PubMed  CAS  Google Scholar 

  • Ferretti JL (1995) Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone 17:353S–364S

    PubMed  CAS  Google Scholar 

  • Frost HM (1987) Bone mass and the mechanostat: a proposal. Anat Rec 219:1–9

    PubMed  CAS  Google Scholar 

  • Frost HM (1996) Perspectives: a proposed general model of the mechanostat (suggestions from a new skeletal-biologic paradigm). Anat Rec 244:139–147

    PubMed  CAS  Google Scholar 

  • Fujita T, Fujii Y, Goto B (1999) Measurement of forearm bone in children by peripheral computed tomography. Calcif Tissue Int 64:34–39

    PubMed  CAS  Google Scholar 

  • Gatti D, Rossini M, Zamberlan N, Braga V, Fracassi E, Adami S (1996) Effect of aging on trabecular and compact bone components of proximal and ultradistal radius. Osteoporos Int 6:355–360

    PubMed  CAS  Google Scholar 

  • Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551

    PubMed  CAS  Google Scholar 

  • Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    PubMed  Google Scholar 

  • Gluer CC, Lu Y, Engelke K (2006) Quality and performance measures in bone densitometry: part 2. Fracture risk. Osteoporos Int 17:1449–1748

    PubMed  CAS  Google Scholar 

  • Gordon C, Lang T, Augat P, Genant H (1998) Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 8:317–325

    PubMed  CAS  Google Scholar 

  • Gordon CL, Webber CE, Adachi JD, Christoforou N (1996) In vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography images. Phys Med Biol 41:495–508

    PubMed  CAS  Google Scholar 

  • Grampp S, Lang P, Jergas M, Gluer CC, Mathur A, Engelke K, Genant HK (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual X-ray absorptiometry. J Bone Miner Res 10:1566–1576

    PubMed  CAS  Google Scholar 

  • Groll O, Lochmuller EM, Bachmeier M, Willnecker J, Eckstein F (1999) Precision and intersite correlation of bone densitometry at the radius, tibia and femur with peripheral quantitative CT. Skeletal Radiol 28:696–702

    PubMed  CAS  Google Scholar 

  • Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual X-ray absorptiometry compared with quantitative CT. Radiology 192:845–850

    PubMed  CAS  Google Scholar 

  • Guglielmi G, Cammisa M, De Serio A, Giannatempo GM, Bagni B, Orlandi G, Russo CR (1997) Long-term in vitro precision of single slice peripheral Quantitative Computed Tomography (pQCT): multicenter comparison. Technol Health Care 5:375–381

    PubMed  CAS  Google Scholar 

  • Guglielmi G, De Serio A, Fusilli S, Scillitani A, Chiodini I, Torlontano M, Cammisa M (2000) Age-related changes assessed by peripheral QCT in healthy Italian women. Eur Radiol 10:609–614

    PubMed  CAS  Google Scholar 

  • Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    PubMed  CAS  Google Scholar 

  • Hakkinen K, Hakkinen A (1991) Muscle cross-sectional area, force production and relaxation characteristics in women at different ages. Eur J Appl Physiol Occup Physiol 62:410–414

    PubMed  CAS  Google Scholar 

  • Hakkinen K, Kraemer WJ, Kallinen M, Linnamo V, Pastinen UM, Newton RU (1996) Bilateral and unilateral neuromuscular function and muscle cross-sectional area in middle-aged and elderly men and women. J Gerontol A Biol Sci Med Sci 51:B21–B29

    PubMed  CAS  Google Scholar 

  • Hangartner TN (1993) The OsteoQuant: an isotope-based CT scanner for precise measurement of bone density. J Comput Assist Tomogr 17:798–805

    PubMed  CAS  Google Scholar 

  • Hangartner TN, Overton TR, Harley CH, van den Berg L, Crockford PM (1985) Skeletal challenge: an experimental study of pharmacologically induced changes in bone density in the distal radius, using gamma-ray computed tomography. Calcif Tissue Int 37:19–24

    PubMed  CAS  Google Scholar 

  • Hangartner TN, Battista JJ, Overton TR (1987) Performance evaluation of density measurements of axial and peripheral bone with x-ray and gamma-ray computed tomography. Phys Med Biol 32:1393–1406

    PubMed  CAS  Google Scholar 

  • Hasegawa Y, Kushida K, Yamazaki K, Inoue T (1997) Volumetric bone mineral density using peripheral quantitative computed tomography in Japanese women. Osteoporos Int 7:195–199

    PubMed  CAS  Google Scholar 

  • Hasegawa Y, Schneider P, Reiners C, Kushida K, Yamazaki K, Hasegawa K, Nagano A (2000) Estimation of the architectural properties of cortical bone using peripheral quantitative computed tomography [In Process Citation]. Osteoporos Int 11:36–42

    PubMed  CAS  Google Scholar 

  • Hasegawa Y, Schneider P, Reiners C (2001) Age, sex, and grip strength determine architectural bone parameters assessed by peripheral quantitative computed tomography (pQCT) at the human radius. J Biomech 34:497–503

    PubMed  CAS  Google Scholar 

  • Heinonen A, Sievanen H, Kannus P, Oja P, Vuori I (2002) Site-specific skeletal response to long-term weight training seems to be attributable to principal loading modality: a pQCT study of female weightlifters. Calcif Tissue Int 70:469–474

    PubMed  CAS  Google Scholar 

  • Hernandez ER, Revilla M, Seco-Durban C, Villa LF, Cortes J, Rico H (1997) Heterogeneity of trabecular and cortical postmenopausal bone loss: a longitudinal study with pQCT. Bone 20:283–287

    PubMed  CAS  Google Scholar 

  • Horikoshi T, Endo N, Uchiyama T, Tanizawa T, Takahashi HE (1999) Peripheral quantitative computed tomography of the femoral neck in 60 Japanese women. Calcif Tissue Int 65:447–453

    PubMed  CAS  Google Scholar 

  • Hosking D, Chilvers CED, Christiansen C, Ravn P, Wasnich R, Ross P, McClung M, Balske A, Thompson D, Daley M, Yates AJ (1998) Prevention of Bone Loss with Alendronate in Postmenopausal Women under 60 Years of Age. N Engl J Med 338:485–492

    PubMed  CAS  Google Scholar 

  • Hudelmaier M, Kuhn V, Lochmuller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15:375–381

    PubMed  CAS  Google Scholar 

  • Ito M, Matsumoto T, Enomoto H, Tsurusaki K, Hayashi K (1999a) Effect of nonweight bearing on tibial bone density measured by QCT in patients with hip surgery. J Bone Miner Metab 17:45–50

    PubMed  CAS  Google Scholar 

  • Ito M, Nakamura T, Tsurusaki K, Uetani M, Hayashi K (1999b) Effects of Menopause on Age-Dependent Bone Loss in the Axial and Appendicular Skeletons in Healthy Japanese Women. Osteoporos Int 10:377–383

    PubMed  CAS  Google Scholar 

  • Jensen GF, Christiansen C, Boesen J, Hegedus V, Transbol I (1982) Epidemiology of postmenopausal spinal and long bone fractures. A unifying approach to postmenopausal osteoporosis. Clin Orthop 166:75–81

    PubMed  Google Scholar 

  • Jiang Y, Zhao J, Augat P, Ouyang X, Lu Y, Majumdar S, Genant HK (1998) Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 13:1783–1790

    PubMed  CAS  Google Scholar 

  • Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 9:70–80

    Google Scholar 

  • Khosla S, Melton LJ 3rd, Achenbach SJ, Oberg AL, Riggs BL (2006a) Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab 91:885–891

    PubMed  CAS  Google Scholar 

  • Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ 3rd (2006b) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131

    PubMed  Google Scholar 

  • Kröger H, Lunt M, Reeve J, Dequeker J, Adams JE, Birkenhager JC, Diaz Curiel M, Felsenberg D, Hyldstrup L, Kotzki P, Laval-Jeantet A, Lips P, Louis O, Perez Cano R, Reiners C, Ribot C, Ruegsegger P, Schneider P, Braillon P, Pearson J (1999) Bone density reduction in various measurement sites in men and women with osteoporotic fractures of spine and hip: the European quantitation of osteoporosis study. Calcif Tissue Int 64:191–199

    PubMed  Google Scholar 

  • Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of highresolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314

    PubMed  Google Scholar 

  • Laib A, Rüegsegger P (1999) Calibration of Trabecular Bone Structure Measurements of In Vivo Three-Dimensional Peripheral Quantitative Computed Tomography With 28-mm-resolution Microcomputed Tomography. Bone 24:35–39

    PubMed  CAS  Google Scholar 

  • Laib A, Hildebrand T, Heauselmann HJ, Reuegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546

    PubMed  CAS  Google Scholar 

  • Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337

    PubMed  CAS  Google Scholar 

  • Lalla S, Hothorn LA, Haag N, Bader R, Bauss F (1998) Lifelong administration of high doses of ibandronate increases bone mass and maintains bone quality of lumbar vertebrae in rats. Osteoporos Int 8:97–103

    PubMed  CAS  Google Scholar 

  • Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA (1998) Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res 13:1687–1690

    PubMed  CAS  Google Scholar 

  • Lochmuller EM, Burklein D, Kuhn V, Glaser C, Muller R, Gluer CC, Eckstein F (2002a) Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 31:77–84

    PubMed  Google Scholar 

  • Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002b) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638

    PubMed  Google Scholar 

  • Lochmuller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18:906–912

    PubMed  Google Scholar 

  • Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    PubMed  CAS  Google Scholar 

  • Louis O, Boulpaep F, Willnecker J, Van den Winkel P, Osteaux M (1995a) Cortical mineral content of the radius assessed by peripheral QCT predicts compressive strength on biomechanical testing. Bone 16:375–379

    PubMed  CAS  Google Scholar 

  • Louis O, Willnecker J, Soykens S, Van den Winkel P, Osteaux M (1995b) Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens. Osteoporos Int 5:446–449

    PubMed  CAS  Google Scholar 

  • Louis O, Soykens S, Willnecker J, Van den Winkel P, Osteaux M (1996) Cortical and total bone mineral content of the radius: accuracy of peripheral computed tomography. Bone 18:467–472

    PubMed  CAS  Google Scholar 

  • MacDonald HM, Kontulainen SA, Mackelvie-O’Brien KJ, Petit MA, Janssen P, Khan KM, McKay HA (2005) Maturity-and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study. Bone 36:1003–1011

    PubMed  Google Scholar 

  • Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239

    PubMed  CAS  Google Scholar 

  • Maughan RJ, Watson JS, Weir J (1984) Muscle strength and cross-sectional area in man: a comparison of strengthtrained and untrained subjects. Br J Sports Med 18:149–157

    PubMed  CAS  Google Scholar 

  • Medici TC, Rüegsegger P (1990) Does alternate-day cloprednol therapy prevent bone loss? A longitudinal doubleblind, controlled clinical study. Clin Pharmacol Ther 48:455–466

    PubMed  CAS  Google Scholar 

  • Melton LJd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233

    PubMed  Google Scholar 

  • Miller ME, Hangartner TN (1999) Bone density measurements by computed tomography in osteogenesis imperfecta type I. Osteoporos Int 9:427–432

    PubMed  CAS  Google Scholar 

  • Müller A, Rüegsegger E, Rüegsegger P (1989) Peripheral QCT: a low-risk procedure to identify women predisposed to osteoporosis. Phys Med Biol 34:741–749

    PubMed  Google Scholar 

  • Müller R, Hildebrand T, Rüegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39:145–164

    PubMed  Google Scholar 

  • Müller R, Hildebrand T, Hauselmann HJ, Rüegsegger P (1996) In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11:1745–1750

    PubMed  Google Scholar 

  • Münch B, Rüegsegger P (1993) 3-D repositioning and differential images of volumetric CT measurements. IEEE Trans Med Imag 12:509–514

    Google Scholar 

  • Neu CM, Manz F, Rauch F, Merkel A, Schoenau E (2001a) Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28:227–223

    PubMed  CAS  Google Scholar 

  • Neu CM, Rauch F, Manz F, Schoenau E (2001b) Modeling of cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral quantitative computed tomography. Osteoporos Int 12:538–547

    PubMed  CAS  Google Scholar 

  • Neu CM, Rauch F, Rittweger J, Manz F, Schoenau E (2002) Influence of puberty on muscle development at the forearm. Am J Physiol Endocrinol Metab 283:E103–E107

    PubMed  CAS  Google Scholar 

  • Nijs J, Westhovens R, Joly J, Cheng XG, Borghs H, Dequeker J (1998) Diagnostic sensitivity of peripheral quantitative computed tomography measurements at ultradistal and proximal radius in postmenopausal women. Bone 22:659–664

    PubMed  CAS  Google Scholar 

  • Nordin BE, Chatterton BE, Walker CJ, Wishart J (1987) The relation of forearm mineral density to peripheral fractures in postmenopausal women. Med J Aust 146:300–304

    PubMed  CAS  Google Scholar 

  • Patel PV, Prevrhal S, Bauer JS, Phan C, Eckstein F, Lochmuller EM, Majumdar S, Link TM (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253

    PubMed  Google Scholar 

  • Patel R, Blake GM, Rymer J, Fogelman I (2000) Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women. Osteoporos Int 11:68–75

    PubMed  CAS  Google Scholar 

  • Pearson J, Rüegsegger P, Dequeker J, Henley M, Bright J, Reeve J, Kalender W, Felsenberg D, Laval-Jeantet AM, Adams JE et al (1994) European semi-anthropomorphic phantom for the cross-calibration of peripheral bone densitometers: assessment of precision accuracy and stability. Bone Miner 27:109–120

    PubMed  CAS  Google Scholar 

  • Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, Eckstein F, Majumdar S, Link TM (2006) Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 239:488–496

    PubMed  Google Scholar 

  • Prevrhal S, Engelke K, Kalender W (1999) Accuracy limits for the determination of cortical width and density: the influence on object size and ct imaging parameters. Phys Med Biol 44:751–764

    PubMed  CAS  Google Scholar 

  • Qin L, Au SK, Chan KM, Lau MC, Woo J, Dambacher MA, Leung PC (2000) Peripheral volumetric bone mineral density in pre-and postmenopausal Chinese women in Hong Kong [In Process Citation]. Calcif Tissue Int 67:29–36

    PubMed  CAS  Google Scholar 

  • Rauch F, Klein K, Allolio B, Schonau E (1999) Age at menarche and cortical bone geometry in premenopausal women. Bone 25:69–73

    PubMed  CAS  Google Scholar 

  • Ravn P, Clemmesen B, Riis BJ, Christiansen C (1996) The effect on bone mass and bone markers of different doses of ibandronate: a new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: a 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone 19:527–533

    PubMed  CAS  Google Scholar 

  • Reeve J, Kroger H, Nijs J, Pearson J, Felsenberg D, Reiners C, Schneider P, Mitchell A, Ruegsegger P, Zander C, Fischer M, Bright J, Henley M, Lunt M, Dequeker J (1996) Radial cortical and trabecular bone densities of men and women standardized with the European Forearm Phantom. Calcif Tissue Int 58:135–143

    PubMed  CAS  Google Scholar 

  • Rittweger J, Beller G, Ehrig J, Jung C, Koch U, Ramolla J, Schmidt F, Newitt D, Majumdar S, Schiessl H, Felsenberg D (2000) Bone-muscle strength indices for the human lower leg. Bone 27:319–326

    PubMed  CAS  Google Scholar 

  • Rittweger J, Michaelis I, Giehl M, Wusecke P, Felsenberg D (2004) Adjusting for the partial volume effect in cortical bone analyses of pQCT images. J Musculoskelet Neuronal Interact 4:436–441

    PubMed  CAS  Google Scholar 

  • Rüegsegger P (1974) An extension of classical bone mineral measurements. Ann Biomed Eng 2

    Google Scholar 

  • Ruegsegger P, Kalender WA (1993) A phantom for standardization and quality control in peripheral bone measurements by pQCT and DXA. Phys Med Biol 38:1963–1970

    Google Scholar 

  • Rupich RC, Specker BL, Lieuw AFM, Ho M (1996) Gender and race differences in bone mass during infancy. Calcif Tissue Int 58:395–397

    PubMed  CAS  Google Scholar 

  • Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, Guralnik J, Ferrucci L (2006) Structural adaptations to bone loss in aging men and women. Bone 38:112–118

    PubMed  Google Scholar 

  • Sato M, Kim J, Short LL, Slemenda CW, Bryant HU (1995) Longitudinal and cross-sectional analysis of raloxifene effects on tibiae from ovariectomized aged rats. J Pharmacol Exp Ther 272:1252–1259

    PubMed  CAS  Google Scholar 

  • Schlenker RA, VonSeggen WW (1976) The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tissue Res 20:41–52

    PubMed  CAS  Google Scholar 

  • Schneider P, Butz S, Allolio B, Börner W, Klein K, Lehmann R, Petermann K, Tysarczyk-Niemeyer G, Wüster C, Zander C et al (1995) Multicenter German reference data base for peripheral quantitative computer tomography. Technol Health Care 3:69–73

    PubMed  CAS  Google Scholar 

  • Schneider P, Reiners C, Cointry GR, Capozza RF, Ferretti JL (2001) Bone quality parameters of the distal radius as assessed by pQCT in normal and fractured women. Osteoporos Int 12:639–646

    PubMed  CAS  Google Scholar 

  • Schneider PF, Fischer M, Allolio B, Felsenberg D, Schroder U, Semler J, Ittner JR (1999) Alendronate increases bone density and bone strength at the distal radius in postmenopausal women. J Bone Miner Res 14:1387–1393

    PubMed  CAS  Google Scholar 

  • Schnitzler CM, Biddulph SL, Mesquita JM, Gear KA (1996) Bone structure and turnover in the distal radius and iliac crest: a histomorphometric study. J Bone Miner Res 11:1761–1768

    PubMed  CAS  Google Scholar 

  • Schoenau E (2005a) From mechanostat theory to development of the Functional Muscle-Bone-Unit. J Musculoskelet Neuronal Interact 5:232–238

    PubMed  CAS  Google Scholar 

  • Schoenau E (2005b) The functional muscle-bone unit: a two-step diagnostic algorithm in pediatric bone disease. Pediatr Nephrol 20:356–359

    PubMed  Google Scholar 

  • Schoenau E, Neu CM, Mokov E, Wassmer G, Manz F (2000) Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab 85:1095–1098

    PubMed  CAS  Google Scholar 

  • Schoenau E, Neu CM, Rauch F, Manz F (2001) The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 86:613–618

    PubMed  CAS  Google Scholar 

  • Schoenau E, Neu CM, Beck B, Manz F, Rauch F (2002a) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101

    PubMed  Google Scholar 

  • Schoenau E, Neu CM, Rauch F, Manz F (2002b) Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone 31:110–113

    PubMed  CAS  Google Scholar 

  • Schonau E (1998a) The development of the skeletal system in children and the influence of muscular strength. Horm Res 49:27–31

    PubMed  CAS  Google Scholar 

  • Schonau E (1998b) Problems of bone analysis in childhood and adolescence. Pediatr Nephrol 12:420–429

    PubMed  CAS  Google Scholar 

  • Schonau E, Werhahn E, Schiedermaier U, Mokow E, Schiessl H, Scheidhauer K, Michalk D (1996) Influence of muscle strength on bone strength during childhood and adolescence. Horm Res 45[Suppl 1]:63–66

    PubMed  Google Scholar 

  • Shepherd JA, Lu Y, Cheng X, Engelke K, Njeh C, Toschke J, Fuerst T, Genant HK (2000) Universal standardization of forearm bone densitometry: densitometry relationships. J Bone and Miner 17:734–745

    Google Scholar 

  • Sievänen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision [see comments]. J Bone Miner Res 13:871–882

    PubMed  Google Scholar 

  • Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Res 12:211–218

    PubMed  CAS  Google Scholar 

  • Srivastava AK, Bhattacharyya S, Castillo G, Wergedal J, Mohan S, Baylink DJ (2000) Development and application of a serum C-telopeptide and osteocalcin assay to measure bone turnover in an ovariectomized rat model. Calcif Tissue Int 66:435–442

    PubMed  CAS  Google Scholar 

  • Sumnik Z, Land C, Coburger S, Neu C, Manz F, Hrach K, Schoenau E (2006) The muscle-bone unit in adulthood: influence of sex, height, age and gynecological history on the bone mineral content and muscle cross-sectional area. J Musculoskelet Neuronal Interact 6:195–200

    PubMed  CAS  Google Scholar 

  • Takada M, Engelke K, Hagiwara S, Grampp S, Genant HK (1996) Accuracy and precision study in vitro for peripheral quantitative computed tomography. Osteoporos Int 6:207–212

    PubMed  CAS  Google Scholar 

  • Tucci JR, Tonino RP, Emkey RD, Peverly CA, Kher U, Santora AC 2nd (1996) Effect of three years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med 101:488–501

    PubMed  CAS  Google Scholar 

  • Ulrich D, Rietbergen BV, Laib A, Ruegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60

    PubMed  CAS  Google Scholar 

  • Wachter NJ, Augat P, Mentzel M, Sarkar MR, Krischak GD, Kinzl L, Claes LE (2001) Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Bone 28:133–139

    PubMed  CAS  Google Scholar 

  • Wang Q, Alen M, Nicholson P, Lyytikainen A, Suuriniemi M, Helkala E, Suominen H, Cheng S (2005) Growth patterns at distal radius and tibial shaft in pubertal girls: a 2-year longitudinal study. J Bone Miner Res 20:954–961

    PubMed  Google Scholar 

  • Webb S (1998) The mathematics of image formation and image processing. In: Webb S (ed) The physics of medical imaging. Institute of Physics Publishing, London, pp 534–566

    Google Scholar 

  • Wu C, Hans D, He Y, Fan B, Njeh CF, Augat P, Richards J, Genant HK (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26:529–533

    PubMed  CAS  Google Scholar 

  • Zanchetta JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M, Gaich GA, Dalsky GP, Myers SL (2003) Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 18:539–543

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prevrhal, S., Engelke, K., Genant, H.K. (2008). pQCT: Peripheral Quantitative Computed Tomography. In: Grampp, S. (eds) Radiology of Osteoporosis. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68604-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68604-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25888-9

  • Online ISBN: 978-3-540-68604-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics