Skip to main content

Dose Reduction and Optimization in Computed Tomography of the Chest

  • Chapter
  • 1400 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Since the late 1980s, helical computed tomography (CT) has revolutionized diagnostic imaging of the chest. Single-detector CT scanners (SDCT) and, more recently, multi-detector CT scanners (MDCT) have markedly increased the number of indications of CT. As a result, the number of CT examinations performed has increased dramatically, as have the average scanned volume per patient and the number of acquisitions per examination. The subsequent increase in collective radiation dose has been of concern to radiologists, medical physicists and governmental regulatory authorities and it has been suggested that the radiation dose used for CT was excessive (Rogers 2001a, b).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bae KT, Slone RM, Gierada DS, Yusen RD, Cooper JD (1997) Patients with emphysema: quantitative CT analysis before and after lung volume reduction surgery. Radiology 203:705–714

    PubMed  CAS  Google Scholar 

  • Bankier AA, Schaefer-Prokop C, De Maertelaer V, Tack D, Jaksch P, Klepetko W, Gevenois PA (2006) Air trapping on thin-section CT examinations: comparison of standard-dose and simulated low-dose techniques. Radiology (in press)

    Google Scholar 

  • Dinkel HP, Sonnenschein M, Hoppe H, Vock P (2003) Lowdose multislice CT of the thorax in follow-up of malignant lymphoma and extrapulmonary primary tumors. Eur Radiol 13:1241–1249

    PubMed  Google Scholar 

  • Dirksen A, Dijkman JH, Madsen F et al (1999) A randomized clinical trial of α1-antitrypsin augmented therapy. Am J Respir Crit Care Med 160:1468–1472

    PubMed  CAS  Google Scholar 

  • Gierada DS, Yusen RD, Pilgram TK et al (2001) Repeatability of quantitative CT indexes of emphysema in patients evaluated for lung volume reduction surgery. Radiology 220:448–454

    PubMed  CAS  Google Scholar 

  • Golding SJ, Shrimpton PC (2002) Radiation dose in CT: are we meeting the challenge? (Commentary). Br J Radiol 75:1–4

    PubMed  CAS  Google Scholar 

  • Henschke CI, McCauley DI, Yankelevitz DF et al (1999) Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 354:99–105

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Ikeda M, Arahata S et al (2000) Lung cancer screening: minimum tube current required for helical CT. Radiology 215:175–183

    PubMed  CAS  Google Scholar 

  • Lee KS, Primack SL, Staples CA, Mayo JR, Aldrich JE, Müller NL (1994) Chronic infiltrative lung disease: comparison of diagnostic accuracies of radiography and low-and conventional-dose thin-section CT. Radiology 191:669–673

    PubMed  CAS  Google Scholar 

  • Madani A, De Maertelaer V, Zanen J, Gevenois PA (2006) Pulmonary emphysema: impact of radiation dose and section thickness on objective quantification at multidetector row CT — comparison with macroscopic and microscopic morphometry. Radiology (in press)

    Google Scholar 

  • Mayo JR, Webb WR, Gould R et al (1987) High-resolution CT of the lungs: an optimal approach. Radiology 163:507–510

    PubMed  CAS  Google Scholar 

  • Mayo JR, Whittall KP, Leung AN et al (1997) Simulated dose reduction in conventional chest CT: validation study. Radiology 202:453–457

    PubMed  CAS  Google Scholar 

  • Naidich DP, Marshall CH, Gribbin C, Arams RS, McCauley DI (1990) Low-dose CT of the lungs: preliminary observations. Radiology 175:729–731

    PubMed  CAS  Google Scholar 

  • Newell JD, Hogg JC, Snider GL (2004) Report of a workshop: quantitative computed tomography scanning in longitudinal studies of emphysema. Eur Respir J 23:769–775

    Article  PubMed  Google Scholar 

  • Rennard S, Decramer M, Calverley PM, Pride NB, Soriano JB, Vermeire PA, Vestbo J (2002) Impact of COPD in North America and Europe in 2000: subjects’ perspective of Confronting COPD International Survey. Eur Respir J 20:799–805

    Article  PubMed  CAS  Google Scholar 

  • Rogers LF (2001a) Radiation exposure in CT: why so high? AJR Am J Roentgenol 177:277

    PubMed  CAS  Google Scholar 

  • Rogers LF (2001b) Serious business: radiation safety and radiation protection. AJR Am J Roentgenol 177:1

    PubMed  CAS  Google Scholar 

  • Shrimpton PC, Hillier MC, Lewis MA et al (2003) Data from computed tomography (CT) examinations in the UK — 2003 review. NRPB — 67, National Radiological Protection Board, Chilton

    Google Scholar 

  • Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multidetector row chest CT in adults: feasability and effect on image quality and iodine dose. Radiology 231:169–174

    Article  PubMed  Google Scholar 

  • Snider GL, Kleinerman JL, Thurlbeck WM et al (1985) The definition of emphysema. Report of a national Heart, Lung, and Blood Institute, Division of Lung Disease Workshop. Am Rev Respir Dis 132:182–185

    Google Scholar 

  • Studler U, Gluecker T, Bongartz G et al (2005) Image quality from high-resolution CT of the lung: comparison of axial scans and of sections reconstructed from volumetric data acquired using MDCT. AJR 185:602–607

    PubMed  Google Scholar 

  • Swensen SJ, Jett JR, Sloan JA et al (2002) Screening for lung cancer with low-dose spiral computed tomography. Am J Respir Crit Care Med 165:508–513

    PubMed  Google Scholar 

  • Tack D, De Maertelaer V, Petit W, Scillia P, Muller P, Suess C, Gevenois PA (2005) Comparisons of standard-dose and simulated low-dose multi-detector-row CT pulmonary angiography. Radiology 236:318–325

    Article  PubMed  Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly. United Nations, New York

    Google Scholar 

  • Zwirewich CV, Mayo JR, Müller NL (1991) Low-dose highresolution CT of lung parenchyma. Radiology 180:413–417

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gevenois, P.A., Tack, D. (2007). Dose Reduction and Optimization in Computed Tomography of the Chest. In: Tack, D., Gevenois, P.A. (eds) Radiation Dose from Adult and Pediatric Multidetector Computed Tomography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68575-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68575-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28888-6

  • Online ISBN: 978-3-540-68575-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics