Impact of a Change of Support on the Assessment of Biodiversity with Shannon Entropy

  • Didier Josselin
  • Ilene Mahfoud
  • Bruno Fady
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


The research deals with the Modifiable Areal Unit Problem (MAUP). The MAUP is a common scale effect in geostatistics relating to how a studied territory is partitioned and to the ecological fallacy problem due to spatial data aggregation. We processed a biodiversity assessment using the Shannon index on a set of remote sensing data (SPOT 5) on the Ventoux Mount (Southern France). We applied the calculation on different geographical areas, with different sizes, shapes and spatial resolutions to test the effect of support change on the biodiversity measures. We proposed a method to aggregate the data at several imbricated scales so that the loss of biodiversity due to the spatial autocorrelation can be estimated separately from the MAUP. The concept of ‘pertinent’ scale is then discussed through two biodiversity criteria, a quantitative one (the Normalized Difference Vegetation Index, which evaluates the biomass quantity) and a qualitative one (a species typology, coming from a supervised classification of remote sensing data and experts maps).


Modifiable Unit Problem biodiversity pertinent scale remote sensing data Shannon entropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrhein, C., (1995), Searching for the elusive aggregation effect: evidence from statistical simulations, Environment and Planning A, 27, 105-119.CrossRefGoogle Scholar
  2. Atlan H., (2006), L’organisation biologique et la théorie de l’information, La librairie du XXIème siècle, Seuil:Paris.Google Scholar
  3. Baker W., (1997), The r.le Programs, A set of GRASS programs for the quantitative analysis of landscape structure. Version 2.2, University of Wyoming, USA. Scholar
  4. Baldwin David J. B., Weaver Kevin, Schnekenburger Frank & Perera Ajith H., (2004), Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation, Landscape Ecology, Vol. 19-3, 255-271.Google Scholar
  5. Clark W.A., Karen L., (1976), The effects of data aggregation in statistical analysis. Geographical Analysis, vol. VIII, 429-438.Google Scholar
  6. Cliff, A. D. & Ord J. K. (1973), Spatial autocorrelation, Pion:London.Google Scholar
  7. Cressie N., (1993), Statistics for spatial data, Wiley:NY.Google Scholar
  8. Dusek T., (2005), The Modifiable Areal Unit Problem in regional economics. The 45th Congress of the European Regional Science Association:Amsterdam.Google Scholar
  9. Frontier S., (1983), L’échantillonnage de la diversité spécifique. In Stratégie d’échantillonnage en écologie, Frontier et Masson (eds) Paris (Coll. D’Ecologie).Google Scholar
  10. Farina A., (2000), Landscape Ecology in action, Kluwer:London.Google Scholar
  11. Gehlke C.E., Biehl, K., (1934), Certain effects of grouping upon the size of the correlation coefficient in census tract material, Journal of the American Statistical Association, 169-170.Google Scholar
  12. Gotway Crawford C. A. and Young L. J. (2004), A spatial view of the ecological inference problem in Ecological Inference. New Methodological Strategies Series: Analytical Methods for Social Research, Gary King, Ori Rosen Martin, A. Tanner (Eds).Google Scholar
  13. Jelinski D.E., Wu J., (1996), The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, vol. 11-3, 129-140.CrossRefGoogle Scholar
  14. Lovett Gary M., Turner Monica G., Jones Clive G., Weathers Kathleen C. (eds), (2006) Ecosystem Function in Heterogeneous Landscapes, Springer.Google Scholar
  15. Marceau D.J., Howarth P.J., Gratton D.J., (1994) Remote sensing and the measurement of geographical entities in a forested environment; part 1, The scale and spatial aggregation problem, Remote Sensing of environment, vol. 49-2, 93-104.CrossRefGoogle Scholar
  16. Mahfoud I., Josselin D., Fady B., (2007) Sensibilité des indices de diversité à l’agrégation, in Informations géographiques. Structuration, extraction et utilisation, C. Weber & P. Gançarski (Eds). Revue Internationale de Géomatique, Hermès, Paris, vol. 17, 3-4, 293-308.Google Scholar
  17. Openshaw S., (1984), The modifiable areal unit problem. Concepts and Techniques in Modern Geography., Number 38, Geo Books:Norwich.Google Scholar
  18. Rastetter E.B., King A.W., Cosby B.J., Hornberger G.M., O’Neill R.V., Hobbie J.E., (1992), Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecological Applications 2, 55-70.CrossRefGoogle Scholar
  19. Reynolds, H. D., (1998), The modifiable areal unit problem: empirical analysis by statistical simulation, Thesis, University of Toronto.Google Scholar
  20. Robinson A.H., (1950), Ecological correlation and the behaviour of individuals. American Sociological Review, 15, 1-357.Google Scholar
  21. Tucker, C.J. (1979) Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8-2, 127-150.CrossRefGoogle Scholar
  22. Wu J., Gao W., Tueller P.T., (1997), Effects of changing spatial scale on the results of statistical analysis with landscape data: A case study, Geographic Information Sciences 3, 30-41.Google Scholar
  23. Wu J., Levin S.A., (1994), A spatial patch dynamic modelling approach to pattern and process in annual grassland, Ecological Monographs, 64, 447-467.CrossRefGoogle Scholar
  24. Yule, G.U. and Kendall, M.G., (1950), An introduction to the theory of statistics, Griffin:London.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Didier Josselin
    • 1
  • Ilene Mahfoud
    • 1
  • Bruno Fady
    • 2
  1. 1.UMR 6012 ESPACE CNRS – Université d’Avignon84029 Avignon cedex 1France
  2. 2.INRA UR629 Ecologie des Forêts Méditerranéennes( URFM) Site Agroparc84914 AVIGNON cedex 9France

Personalised recommendations