Advertisement

Clustering Algorithm for Network Constraint Trajectories

  • Ahmed Kharrat
  • Iulian Sandu Popa
  • Karine Zeitouni
  • Sami Faiz
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Spatial data mining is an active topic in spatial databases. This paper proposes a new clustering method for moving object trajectories databases. It applies specifically to trajectories that only lie on a predefined network. The proposed algorithm (NETSCAN) is inspired from the well-known density based algorithms. However, it takes advantage of the network constraint to estimate the object density. Indeed, NETSCAN first computes dense paths in the network based on the moving object count, then, it clusters the sub-trajectories which are similar to the dense paths. The user can adjust the clustering result by setting a density threshold for the dense paths, and a similarity threshold within the clusters. This paper describes the proposed method. An implementation is reported, along with experimental results that show the effectiveness of our approach and the flexibility allowed by the user parameters.

Keywords

Spatial data mining clustering algorithm similarity measure moving objects database road traffic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankerst M., M. M. Breunig, H.-P. Kriegel and J. Sander (1999), OPTICS: Ordering Points to Identify the Clustering Structure, In Proc. 1999 ACM SIGMOD Int’l Conf. on Management of Data, Philadelphia, Pennsylvania, pp. 46-60.Google Scholar
  2. Brinkhoff T., A Framework for Generating Network-Based Moving Objects, GeoInformatica, Vol. 6, No. 2, Kluwer, 2002, 153-180CrossRefGoogle Scholar
  3. Chang J-W., R. Bista, Y-C. Kim and Y-K Kim (2007) Spatio-temporal Similarity Measure Algorithm for Moving Objects on Spatial Networks. ICCSA 2007, pp.1165-1178.Google Scholar
  4. Chen L., M.T. Ozsu and V. Oria (2005), Robust and Fast Similarity Search for Moving Object Trajectories. In: ACM SIGMOD, pp. 491-502. ACM Press, New York.Google Scholar
  5. Du Mouza C. and P. Rigaux. Mobility Patterns. In Proc. Intl. Workshop on Spatiotemporal Databases (STDBM’04).Google Scholar
  6. Ester M., H.-P. Kriegel, J. Sander and X. Xu (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, In Proc. 2nd Int’l Conf. on Knowledge Discovery and Data Mining, Portland, Oregon, pp. 226-231.Google Scholar
  7. Gaffney S. and P. Smyth, (1999) Trajectory Clustering with Mixtures of Regression Models, In Proc. 5th ACM SIGMOD Int’l Conf. on knowledge Discovery and Data Mining, San Diego, California, pp. 63-72.Google Scholar
  8. Hadjieleftheriou M., G. Kollios, P. Bakalov, V. Trotras (2005) Complex Spatio-Temporal Pattern Queries. In Proc. of the 31st VLDB Conference.Google Scholar
  9. Han J. and M. Kamber (2006) Data Mining: Concepts and Techniques, 2nd ed., Morgan Kaufmann.Google Scholar
  10. Hwang J-R., H-Y. Kang and K-J. Li (2005) Spatio-temporal Analysis Between Trajectories on Road Networks. ER Workshops 2005, LNCS 3770, pp. 280-289.Google Scholar
  11. Lee J-G, J. Han and K-Y. Whang (2007) Trajectory Clustering: A Partition-and-Group Framework. In Proc. SIGMOD’07, Beijing, China.Google Scholar
  12. Lin B., J. Su (2005) Shapes Based Trajectory Queries for Moving Objects. GIS, pp. 21-30.Google Scholar
  13. Lloyd S. (1982) Least Squares Quantization in PCM, IEEE Trans. on Information Theory, 28(2): 129-137.CrossRefGoogle Scholar
  14. Sakurai Y., M. Yoshikawa and C. Faloutsos (2005) FTW: Fast Similarity Search under the Time Warping Distance. In: PODS, pp. 326-337.Google Scholar
  15. Savary L., Wan T., Zeitouni K., Spatio-Temporal Data Warehouse Design for Activity Pattern Analysis, DEXA Workshop on Geographic Information Management, September, 2004, Zaragoza, Spain, pp. 814-818.Google Scholar
  16. Shim C-B and J-W Chang (2003) Similar Sub-Trajectory Retrieval for Moving Objects in Spatiotemporal Databases. In: Proc. of the 7th EECADIS, pp.308-322.Google Scholar
  17. Tiakas E., A. N. Papadopoulos, A. Nanopoulos and Y. Manolopoulos (2006) Trajectory Similarity Search in Spatial Networks. In : Proc. of the 10th IDEAS, pp. 185-192.Google Scholar
  18. Vlachos M., D. Gunopulos and G. Kollios (2002) Robust Similarity Measures of Mobile Object Trajectories. In: Proc. of the 13 th Intl. Workshop on DEXA, IEEE Computer Society Press, Los Alamitos pp. 721-728.Google Scholar
  19. Vlachos M., G. Kollios and D. Gunopulos (2002) Discovering Similar Multidimensional Trajectories. In: Proc. Of the 18th ICDE. IEEE Computer Society Press, Los Alamitos pp. 673-684.Google Scholar
  20. Wan T. and Zeitouni K., An OLAP System for Network-Constraint Moving Objects, ACM SAC 2007, The 22nd Annual ACM Symposium on Applied Computing, Seoul, Korea, March, 2007, pp. 13-18.Google Scholar
  21. Yanagisawa Y., J. Akahani, T. Satoch (2003) Shape-Based Similarity Query for Trajectory of Mobile Objects. In : Proc. Of the 4th Intl. Conf. On MDM, pp. 63-77.Google Scholar
  22. Zeinalipour-Yazti D., S. Song Lin, D. Gunopulos (2006) Distributed Spatio-Temporal Similarity Search. CIKM, pp. 14-23.Google Scholar
  23. Zhang T., R. Ramakrishnan, and M. Livny (1996) BIRCH: An Efficient Data Clustering Method for Very Large Databases. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, Montreal, Canada, pp. 103-114.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ahmed Kharrat
    • 1
  • Iulian Sandu Popa
    • 1
  • Karine Zeitouni
    • 1
  • Sami Faiz
    • 2
  1. 1.PRiSM LaboratoryUniversity of VersaillesFrance
  2. 2.LTSIRSEcole nationale d’ingénieurs de TunisB.P. 37 – 1002 Tunis-BelvédèreTunisie

Personalised recommendations