Where is the Terraced House? On the Use of Ontologies for Recognition of Urban Concepts in Cartographic Databases

  • Patrick Lüscher
  • Robert Weibel
  • William A. Mackaness
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


In GIS datasets, it is rare that building objects are richly attributed. Yet having semantic information (such as tenement, terraced, semi-detached) has real practical application (in visualisation and in analysis). It is often the case that we can infer semantic information simply by visual inspection – based on metric and topological properties for example. This paper explores the application of pattern recognition techniques as a way of automatically extracting information from vector databases and attaching this information to the attributes of a building. Our methodology builds upon the idea of an ontology-driven pattern recognition approach. These ideas are explored through the automatic detection of terraced houses (based on Ordnance Survey MasterMap® vector data). The results appear to demonstrate the feasibility of the approach. In conclusion we discuss the benefits and difficulties encountered, suggest ways to deal with these challenges, and propose short and long term directions for future research.


cartographic databases ontologies ontology-driven pattern recognition building types geographical characterisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal P (2005) Ontological Considerations in GIScience. International Journal of Geographical Information Science 19(5):501–536CrossRefGoogle Scholar
  2. Anders K-H, Sester M (1997) Methods of Data Base Interpretation – Applied to Model Generalization from Large to Medium Scale. In: Förstner W, Plümer L (eds) Semantic Modeling for the Acquisition of Topographic Information from Images and Maps: SMATI 97. Birkhäuser, Basel, pp 89–103Google Scholar
  3. Anders K-H, Sester M, Fritsch D (1999) Analysis of Settlement Structures by Graph-Based Clustering. SMATI’99 – Semantic Modelling for the Acquisition of Topographic Information from Images and Maps, 7th September, Munich, GermanyGoogle Scholar
  4. Barnsley MJ, Barr SL (1997) Distinguishing Urban Land-use Categories in Fine Spatial Resolution Land-cover Data using a Graph-based, Structural Pattern Recognition System. Computers, Environment and Urban Systems 21(3–4):209–225CrossRefGoogle Scholar
  5. Bergsdal H, Brattebø H, Bohne RA, Müller DB (2007) Dynamic Material Flow Analysis of Norway’s Dwelling Stock. Building Research & Information 35(5):557–570CrossRefGoogle Scholar
  6. Boffet A (2001) Méthode de création d’informations multi-niveaux pour la généralisation cartographique de l’urbain. Ph.D. thesis, Université de Marne-la-ValléeGoogle Scholar
  7. Brassel KE, Weibel R (1988) A Review and Conceptual Framework of Auto-mated Map Generalization. International Journal of Geographical Information Systems 2(3):229–244CrossRefGoogle Scholar
  8. Burghardt D, Steiniger S (2005) Usage of Principal Component Analysis in the Process of Automated Generalisation. Proceedings of the 22nd International Cartographic Conference, 11–16 July, A Coruna, SpainGoogle Scholar
  9. Camacho-Hübner E, Golay F (2007) Preliminary Insights on Continuity and Evolution of Concepts for the Development of an Urban Morphological Process Ontology. In: Teller J, Lee JR, Roussey C (eds) Ontologies for Urban Development. Studies in Computational Intelligence, Vol. 61. Springer, Berlin Heidelberg New York, pp 95–108CrossRefGoogle Scholar
  10. Christophe S, Ruas A (2002) Detecting Building Alignments for Generalisation Purposes. In: Richardson DE, van Oosterom P (eds) Advances in Spatial Data Handling (10th International Symposium on Spatial Data Handling). Springer, Berlin Heidelberg New York, pp 419–432Google Scholar
  11. Conzen MRG (1969) Alnwick, Northumberland: A Study in Town-plan Analysis. Institute of British Geographers, LondonGoogle Scholar
  12. Dutton G, Edwardes A (2006) Ontological Modeling of Geographical Relations for Map Generalization. Proceedings of the 9th ICA Workshop on Generalisation and Multiple Representation, 25th June, Portland, USAGoogle Scholar
  13. Fonseca FT, Egenhofer MJ, Agouris P, Câmara G (2002) Using Ontologies for Integrated Geographic Information Systems. Transactions in GIS 6(3):231–257CrossRefGoogle Scholar
  14. Gruber TR (1993) A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2):199–220CrossRefGoogle Scholar
  15. Guarino N (1998) Formal Ontology and Information Systems. In: Guarino N (ed) Formal Ontology in Information Systems. Proceedings of FOIS’98. IOS Press, Amsterdam, pp 3–15Google Scholar
  16. Haarslev V, Möller R, Schröder C (1994) Combining Spatial and Terminological Reasoning. In: Nebel B, Dreschler-Fischer LS (eds) KI-94: Advances in Artificial Intelligence: 18th German Annual Conference on Artificial Intelligence. Lecture Notes in Artificial Intelligence 861. Springer, Berlin Heidelberg New York, pp 142–153Google Scholar
  17. Heinzle F, Anders K-H (2007) Characterising Space via Pattern Recognition Techniques: Identifying Patterns in Road Networks. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) Generalisation of Geographic Information: Cartographic Modelling and Applications. Elsevier Science, Amsterdam et al., pp 233–253CrossRefGoogle Scholar
  18. Jones AN, Larkham PJ (1991) Glossary of Urban Form. Historical Geography Research Series no.26. Institute of British Geographers, LondonGoogle Scholar
  19. King AD (1994) Terminologies and Types: Making Sense of Some Types of Dwellings and Cities. In: Franck KA, Schneekloth LH (eds) Ordering Space – Types in Architecture and Design. Van Nostrand Reinhold, New York et al., pp 127–144Google Scholar
  20. Klien E, Lutz M (2005) The Role of Spatial Relations in Automating the Semantic Annotation of Geodata. In: Cohn AG, Mark DM (eds) Spatial Information Theory, International Conference, COSIT 2005. Lecture Notes in Computer Science 3693. Springer, Berlin Heidelberg New York, pp 133–148Google Scholar
  21. Kovacs K, Zhou S (2007) Key Challenges in Expressing and Utilising Geospatial Semantics at Ordnance Survey. Presentation held at the European Geoinformatics Workshop, 7–9 March, Edinburgh, UK. Accessed 22.01.2008Google Scholar
  22. Kulik L, Duckham M, Egenhofer MJ (2005) Ontology-Driven Map Generalization. Journal of Visual Languages and Computing 16(3):245–267CrossRefGoogle Scholar
  23. Ladner R, Petry FE, Cobb MA (2003) Fuzzy Set Approaches to Spatial Data Mining of Association Rules. Transactions in GIS 7(1):123–138CrossRefGoogle Scholar
  24. Mackaness WA (2006) Automated Cartography in a Bush of Ghosts. Cartography and Geographic Information Science 33(4):245–256CrossRefGoogle Scholar
  25. Mackaness WA, Ruas A (2007) Evaluation in the Map Generalisation Process. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) Generalisation of Geographic Information: Cartographic Modelling and Applications. Elsevier Science, Amsterdam, pp 89–111Google Scholar
  26. Müller DB (2006) Stock Dynamics for Forecasting Material Flows – Case Study for Housing in The Netherlands. Ecological Economics 59(1):142–156CrossRefGoogle Scholar
  27. Redbrake D, Raubal M (2004) Ontology-Driven Wrappers for Navigation Ser-vices. In: Toppen F, Prastacos P (eds) AGILE 2004, 7th Conference on Geographic Information Science. Crete University Press, Heraklion, pp. 195–205Google Scholar
  28. Regnauld N (1996) Recognition of Building Clusters for Generalization. In: Kraak MJ, Molenaar M (eds) Advances in GIS Research II: Proceedings of the Seventh International Symposium on Spatial Data Handling. Taylor & Francis, London, pp 4B.1–4B.14Google Scholar
  29. Ruas A, Plazanet C (1996) Strategies for Automated Generalization. In: Kraak MJ, Molenaar M (eds) Advances in GIS Research II: Proceedings of the Seventh International Symposium on Spatial Data Handling. Taylor & Francis, London, pp 6.1–6.17Google Scholar
  30. Santos P, Bennett B, Sakellariou G (2005) Supervaluation Semantics for an Inland Water Feature Ontology. Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, July 30 – August 5, Edinburgh, ScotlandGoogle Scholar
  31. Sester M (2000) Knowledge Acquisition for the Automatic Interpretation of Spatial Data. International Journal of Geographical Information Science 14(1):1–24CrossRefGoogle Scholar
  32. Simpson J, Weiner E (1989) The Oxford English Dictionary. Oxford University Press, OxfordGoogle Scholar
  33. Steiniger S (2007) Enabling Pattern-aware Automated Map Generalization. Ph.D. thesis, University of ZurichGoogle Scholar
  34. Steiniger S, Lange T, Burghardt D, Weibel R (2008) An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques. Transactions in GIS 12(1):31–59CrossRefGoogle Scholar
  35. Thomson T (2006) Cartographic Data Analysis and Enhancement. Objective 1: Analysis of Functional Information – Needs & Opportunity Analysis, User Requirements, and Use Case. Technical Report, Dept. of Geomatics Eng., University College LondonGoogle Scholar
  36. Winter S (2002) Ontologisches Modellieren von Routen für mobile Navigationsdienste. In: Kelnhofer F, Lechthaler M (eds) TeleKartographie und Location-Based Services. Schriftenreihe der Studienrichtung Vermessungswesen und Geoinformation, Technische Universität Wien, pp 111–124Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Patrick Lüscher
    • 1
  • Robert Weibel
    • 1
  • William A. Mackaness
    • 2
  1. 1.Department of GeographyUniversity of ZurichSwitzerland
  2. 2.Institute of Geography School of GeoSciencesUniversity of EdinburghScotland UK

Personalised recommendations