Advertisement

Implementation of Building Reconstruction Algorithm Using Real World LIDAR Data

  • Rebecca O.C. Tse
  • Chris Gold
  • Dave Kidner
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

An increasing use of three dimensional point clouds for building reconstruction is being driven by the popularity of Airborne Laser Scanning (ALS). Laser scanning data provides rapid and accurate elevation models of buildings, forest and terrain surface. Though the captured data contains X, Y, and Z coordinates, the data volume is huge and does not provide any building information. The challenge is to covert the point clouds into CAD-type models containing vertical walls, roof planes and terrain which can be rapidly displayed from any 3D viewpoint. An alternative method was developed to locate building blocks and identify the roof structures with the use of the Delaunay Triangulation and its dual Voronoi diagram and simulated data was used to illustrate the algorithm. This paper shows the implementation of the method using real world ALS data.

Keywords

Global Position System Delaunay Triangulation Inertial Measuring Unit Lidar Data Vertical Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, F. (1999). “Airborne laser scanning - present status and future expectations”, ISPRS Journal of Photogrammetry & Remote Sensing, 54(1): p.64–67.CrossRefGoogle Scholar
  2. Brenner, C. and Haala, N. (1998) Rapid acquisition of virtual reality city models from multiple data sources. Int. Arch. Photogrammetry Remote Sensing, 32 Part 5. Chikatsu, H. and Shimizu, E. p.323-330Google Scholar
  3. Brenner, C.(1999) “Interactive Modelling Tools for 3D Building Reconstruction.” Fritsch, D. & Spiller, R. (ed.) Photogrammetric Week ‘99’, p.23-34Google Scholar
  4. Brunn A. and Weidner, U. (1997) “Discriminating building and vegetation areas within digital surface models.” Technical report, Institute fur Photogrammetrie, Bonn, Germany.Google Scholar
  5. Charlesworth, H.A.K., Langenberg, C.W. and Ramsden, J. (1975). “Determining axes, axial places and sections of macroscopic folds using computer based methods”. Canadian Journal Earth Science, 13, p.54-65.Google Scholar
  6. Forlani, G.; Nardinocchi, C.; Scaioni, M. & Zingaretti, P. (2003) “Building reconstruction and visualization from LIDAR data” ISPRS International Workshop WG V/4 & INTCOM III/V,Vision Techniques for digital architectural and archaeological archives, p. 151-156Google Scholar
  7. Rottensteiner, F. and Briese, C. (2002) “Automatic Generation of Building Models from LIDAR Data and the Integration of Aerial Images” In Maas, H.; Vosselman, G. & Streilein, A. (ed.) Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data, Institute of Photogrammetry and Remote Sensing Dresden University of Technology, 34 Session IVGoogle Scholar
  8. Rottensteiner, F. and Briese, C. (2003) “Automatic generation of building models from LIDAR data and the integration of aerial images.” In H.-G. Maas, G. Vosselman, and A. Streilein, editors, Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data’, volume 34 Session IV, Dresden, Germany, Institute of Photogrammetry and Remote Sensing Dresden University of Technology.Google Scholar
  9. Rottensteiner, F., Trinder, J., Clode, S. and Kubik, K. (2007) “Building Detection by Fusion of Airborne Laser Scanner Data and Multi-spectral Images: Performance Evaluation and Sensitivity Analysis” ISPRS Journal of Photogrammetry & Remote Sensing, 62, p. 135-149CrossRefGoogle Scholar
  10. Sohn, G. and Dowman, I., (2003). “Building extraction using lidar DEMS and IKONOS images.” In H.-G. Maas, G. Vosselman, and A. Streilein, eds., Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data’, volume 34 Session IV. Institute of Photogrammetry and Remote Sensing Dresden University of Technology, Dresden, Germany.Google Scholar
  11. Sohn, G. and Dowman, I. J., (2004). “Extraction of buildings from high resolution satellite data and LIDAR”, Proceedings of ISPRS 20th Congress WGIII/4 Automated Object Extraction. Istanbul, Turkey. p.345-355.Google Scholar
  12. Suveg, I. and Vosselman, G., (2001). “3D Building Reconstruction by Map Based Generation and Evaluation of Hypotheses.” BMVC01.Google Scholar
  13. Suveg, I. and Vosselman, G., (2004). “Reconstruction of 3D building models from aerial images and maps.” ISPRS Journal of Photogrammetry & Remote Sensing, 58(3): p.202–224.CrossRefGoogle Scholar
  14. Tse, R. and Gold, C., (2001). “Terrain, dinosaurs and cadastres -options for three-dimension modelling.” In C. Lemmen and P. van Oosterom, eds., Proceedings: International Workshop on ”3D Cadastres, Delft, The Netherlands. P.243–257.Google Scholar
  15. Tse, R. and Gold, C., (2004). “TIN meets CAD - extending the TIN concept in GIS”. Future Generation Computer Systems (Geocomputation), 20(7) p.1171–1184.CrossRefGoogle Scholar
  16. Tse, R., Gold, C., and Kidner, D., (2007a) “3D City Modelling from LIDAR Data”. Proceedings of Lecture Notes in Geoinformation and Cartography, Delft, The Netherlands. p.161-175.Google Scholar
  17. Tse, R., Gold, C., and Kidner, D., (2007b) “Building Reconstruction Using LIDAR Data” Proceedings of Dynamic and Multi-dimensional GIS 2007, Urmchi, China p.121-126.Google Scholar
  18. Vosselman, G. (1999) “Building Reconstruction Using Planar Faces in Very High Density Height Data” International Archives of Photogrammetry and Remote Sensing, 32, part 3/2W5 , p. 87-92Google Scholar
  19. Vosselman, G. and Dijkman, S., (2001). “3D building model reconstruction from point clouds and ground plans.” Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume 34, part 3/W4,. Annapolis, MA, USA. p. 37–43.Google Scholar
  20. Vosselman, G., (2003). “3D reconstruction of roads and trees for city modelling.” In H.-G. Maas, G. Vosselman, and A. Streilein, eds., Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data, volume 34, Part 3/W13. Institute of Photogrammetry and Remote Sensing Dresden University of Technology, Dresden, Germany.Google Scholar
  21. Wang, Z. & Schenk, T. (2000) “Building Extraction and Reconstruction from LIDAR Data”, In proceedings of IAPRS, July, 33, part B3, p. 958-964Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rebecca O.C. Tse
    • 1
  • Chris Gold
    • 1
  • Dave Kidner
    • 1
  1. 1.Faculty of Advanced TechnologyUniversity of GlamorganWales

Personalised recommendations