Skip to main content

Support Vector Machines for Spatiotemporal Analysis in Geosensor Networks

  • Conference paper
Headway in Spatial Data Handling

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

  • 1211 Accesses

Abstract

Geosensor networks are a growing source of spatiotemporal data. However, the raw data generated by these networks, as simple collections of readings from point locations, allow little analysis to be conducted directly. As such, this research presents support vector machine based methods for the extraction of estimates for the spatial extent of areal events from geosensor data and demonstrates how these results can serve as a basis for spatiotemporal analysis. Support vector machines are a recently developed class of machine learning algorithms that have seen considerable application due to their attractive generalization properties and ability to efficiently handle large datasets. While traditionally applied to classification problems, this research demonstrates how these methods can be applied to geosensor applications where decision boundaries can be interpreted as representations of the boundaries of the spatial extent of events. Once derived, these estimates are shown as capable of serving as input for existing methods for spatiotemporal analysis and enabling description of the evolution of spatiotemporal phenomena in terms of movement and deformation. As coverage of geosensor networks increases, with sensors becoming smaller and cheaper, applications of the techniques described in this research are foreseen in environmental science, public health, and security informatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe S (2005) Support Vector Machines for Pattern Classification, Springer

    Google Scholar 

  • Agouris P, Stefanidis A (2003) Efficient Summarization of Spatiotemporal Events. Communications of the ACM 46: 65-66

    Article  Google Scholar 

  • Agouris P, Stefanidis A, Gyftakis S (2001) Differential Snakes for Change Detection in Road Segments. Photogrammetric Engineering & Remote Sensing 67: 1391-1399

    Google Scholar 

  • Aizermann M, Braverman E, Rozonoer L (1964) Theoretical Foundations of the Potential Function Method in Pattern Recognition. Automation and Remote Control 25: 821-837

    Google Scholar 

  • Boser BE, Guyon IM, Vapnik V (1992) A Training Algorithm for Optimal Margin Classifiers. In: Haussler, D. (Ed.) 5th Annual ACM Workshop on Computational Learning Theory. ACM Press

    Google Scholar 

  • Burges CJC (1998) A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2: 121-167

    Article  Google Scholar 

  • Chen Y, Chuah C, Zhao Q (2008) Network Configuration for Optimal Utilization Efficiency of Wireless Sensor Networks. Ad Hoc Networks 6: 92-107

    Article  Google Scholar 

  • Chintalapudi KK, Govindan R (2003) Localized Edge Detection in Sensor Fields. Ad Hoc Networks 1: 273-291

    Article  Google Scholar 

  • Christianini N, Shawe-Taylor J (2000) An Introduction to Support Vector Machines. Cambridge University Press

    Google Scholar 

  • Croitoru A, Agouris P, Stefanidis A (2005) Rotation, Translation, and Scale Invariant 3D Trajectory Matching by Pose Normalization. In: Shahabi, C. & Boucelma, O. (Eds.) ACM-GIS’05. ACM Press, Bremen

    Google Scholar 

  • Devroye L, Gyorfi L, Lugosi G (1996) A Probabilistic Theory of Pattern Recognition, Springer

    Google Scholar 

  • Duckham M, Nittel S, Worboys M (2005) Monitoring Dynamic Spatial Fields Using Responsive Geosensor Networks. ACM International Workshop on Geographic Information Systems. ACM Press, Bremen

    Google Scholar 

  • Durbha SS, King RL, Youman NH (2007) Support Vector Machines Regression for Retrieval of Leaf Area Index from Multirange Imaging Spectroradiometer. Remote Sensing of Environment 107: 348-361

    Article  Google Scholar 

  • Erwig, M., Gueting, R. H., Schneider, M. & Vazirgiannis, M. (1999) Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. Geoinformatica 3: 143-148

    Article  Google Scholar 

  • Fisher, R. (1952) Contributions to Mathematical Statistics. Wiley, New York

    Google Scholar 

  • Ganesan, D., Estrain, D. & Heidermann, J. (2003) Dimensions: Why do we Need a New Data Handling Architecture for Sensor Networks? ACM SIGCOMM Computer Communication Review 33: 143-148

    Article  Google Scholar 

  • Karl, H. & Willig, A. (2005) Protocals and Architectures for Wireless Sensor Networks. Wiley, West Sussex, England

    Google Scholar 

  • Melgani, F. & Bruzzone, L. (2004) Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing 42: 1778-1790

    Article  Google Scholar 

  • Nittel, S., Duckham, M. & Kulik, L. (2003) Geographic Information Science. In: Egenhofer, M. & Mark, D. M. (Eds.) Second International Conference, GIScience 2003. Springer

    Google Scholar 

  • Novikoff, A. B. (1962) On Convergence Proofs on Perceptrons. Symposium on the Mathematical Theory of Automata. Polytechnic Institute of Brooklyn

    Google Scholar 

  • Nowak, R. & Mitra, U. (2003) Boundary Estimation in Sensor Networks: Theory and Methods. In: Guibas, L. & Zhao, F. (Eds.) Second International Workshop on Information Processing in Sensor Networks. Springer, Palo Alto

    Google Scholar 

  • Nowak, R., Mitra, U. & Willet, R. (2004) Estimating Inhomogenous Fields Using Sensor Networks. IEEE Journal on Selected Areas in Communications 22: 999-1007

    Article  Google Scholar 

  • Partsinevelos, P., Stefanidis, A. & Agouris, P. (2001) Automated Spatiotemporal Scaling for Video Generalization. IEEE International Conference on Image Processing. Thessaloniki, Greece

    Google Scholar 

  • Rosenblatt, F. (1956) The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review 65: 386-408

    Article  Google Scholar 

  • Scholhopf, B. & Smola, A. (2002) Learning with Kernels, MIT Press, Cambridge, MA

    Google Scholar 

  • Stefanidis, A., Eickhorst, K., Agouris, P. & Partsinevelos, P. (2003) Modeling and Comparing Change Using Spatiotemporal Helixes. In: Hoel, E. & Rigaux, P. (Eds.) ACM-GIS’03. ACM Press, New Orleans

    Google Scholar 

  • Stefanidis, A. & Nittel, S. (2004) GeoSensor Networks CRC Press

    Google Scholar 

  • Vapnik, V. (1995) The Nature of Statistical Learning Theory. Wiley, New York

    Google Scholar 

  • Worboys, M. & Duckham, M. (2006) Monitoring Qualitative Spatiotemporal Change for Geosensor Networks. International Journal of Geographic Information Science 20: 1087-1108

    Article  Google Scholar 

  • Yang, R., Tan, J. & Kafatos, M. (2006) A Pattern Selection Algorithm in Kernel PCA Applications. First International Conference on Software and Data Technologies. Setubal, Portugal

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Devine, J., Stefanidis, A. (2008). Support Vector Machines for Spatiotemporal Analysis in Geosensor Networks. In: Ruas, A., Gold, C. (eds) Headway in Spatial Data Handling. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68566-1_12

Download citation

Publish with us

Policies and ethics