Network Awareness, Social Context and Persuasion

  • Donald Steiny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5033)


This paper brings a sociological perspective to an area dominated by social psychology, that of persuasion. It discusses how networks can be used to describe context for persuasive messages. It has been previously argued that network awareness, having knowledge of how networks affect behavior and perception, combined with knowledge of the networks in some part of society such as an organization or region, is important for innovation and productivity. This paper expands on this by introducing the concept of “social context.” While the idea of location in social structure is not new, the difference here is that this paper talks not just about abstract location in social space, but the more concrete realization of it in communication networks based on cell phones, social networking software, IM, email and other new technology is. I argue that the ability to observe and measure these networks can give insight into the user’s behavior, attitudes and worldview and provide a context for persuasion to take place.


Social Network Social Context Cell Phone Social Network Analysis Sociological Perspective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steiny, D., Oinas-Kukkonen, H.: Networks awareness: social network search, innovation and productivity in organisations. International Journal of Networking and Virtual Organisations 4, 413–430 (2007)CrossRefGoogle Scholar
  2. 2.
    Fogg, B.J.: Persuasive Technology. Morgan Kaufmann, San Francisco (2003)Google Scholar
  3. 3.
    Miller, G.: On Being Persuaded. In: Dillard, J.P., Pfau, M. (eds.) The Persuasion Handbook: Developments in Theory and Practice, pp. 3–16. Sage Publications, New York (2002)Google Scholar
  4. 4.
    Petty, R.E., Wegener, D.T.: Attitude Change: Multiple Roles for Persuasion Variables. In: Gilbert, D.T., Fiske, S.T., Gardner, L. (eds.) The Handbook of Social Psychology, vol. 1, pp. 323–390. Oxford University Press, New York (1998)Google Scholar
  5. 5.
    Harjumaa, M., Oinas-Kukkonen, H.: Persuasion Theories and IT Design. In: de Kort, Y., IJsselsteijn, W., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744, pp. 311–314. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Oinas-Kukkonen, H., Harjumaa, M.: Towards a Deeper Understanding of Persuasion in Software and Information Systems. In: The First International Conference on Advances in Human-Computer Interaction, Sante Luce, Martinique (2008)Google Scholar
  7. 7.
    Nadel, S.F.: The Theory of Social Structure. The Free Press of Glencoe, USA (1957) Google Scholar
  8. 8.
    Reichardt, J., White, D.R.: Role models for complex networks. University of Würtsburg, University of California, Irving, USA (2007)Google Scholar
  9. 9.
    Cialdini, R.B.: Influence: Science and Practice. Allyn & Bacon (2000)Google Scholar
  10. 10.
    O’Keefe, D.J.: Understanding Social Influence: Relations Between Lay and Technical Perspectives. Communication Studies 44, 228–238 (1993)Google Scholar
  11. 11.
    White, H.C.: Anatomy of Kinship: Mathematical Models for Structure of Cumulated Roles. Prentice Hall, Engelwood Cliffs (1963)Google Scholar
  12. 12.
    White, H.C.: Chains of Opportunity: Sytem Models of Mobility in Organizations. Harvard University Press, Boston (1970)Google Scholar
  13. 13.
    Breiger, R.L.: White, Harrison. In: Ritzer, G. (ed.) Encyclopedia of Social Theory, vol. 2, pp. 884–886. Sage, Thousand Oaks (2005)Google Scholar
  14. 14.
    Chase, I.D.: Vacancy Chains. Annual Review of Sociology 17, 133–154 (1991)CrossRefGoogle Scholar
  15. 15.
    White, H.C., Lorrain, F.: Structural Equivalence of Individuals in Social Networks. Journal of Mathematical Sociology 1, 49–80 (1971)Google Scholar
  16. 16.
    McAdam, D.: Recruitment to High-Risk Activism: The Case of Freedom Summer. The American Journal of Sociology 92, 64–90 (1986)CrossRefGoogle Scholar
  17. 17.
    Hume, D.: An Enquiry Concerning Human Understanding. Hackett Publishing Company, Inc., Indianapolis (1993)Google Scholar
  18. 18.
    Wilson, T.: Strangers to Ourselves. Belknap Press, Boston (2004)Google Scholar
  19. 19.
    Christakis, N.A., Fowler, J.H.: The Spread of Obesity in a Large Social Network over 32 Years. JAMA 357, 370–379 (2007)Google Scholar
  20. 20.
    Economist: Social Graph-iti. Economist. Enconomist, London (2007)Google Scholar
  21. 21.
    Freeman, L.C.: The Development of Social Network Analysis. Emperical Press (2004)Google Scholar
  22. 22.
    Rogers, E.M.: The Diffusion of Innovation. The Free Press (2003)Google Scholar
  23. 23.
    Burt, R.S.: Social Contagion and Innovation: Cohesion Versus Structural Equivalence. The American Journal of Sociology 92, 1287–1335 (1987)CrossRefGoogle Scholar
  24. 24.
    Saxenian, A.: Regional Advantage. Harvard University Press, Boston (1996)Google Scholar
  25. 25.
    Sull, D.: From Community of Innovation to Community of Inertia: The Rise and Fall of the US Tire Industry. In: XIII Conference of the International Economic History Association, Buenos Aires, Argentina (2002)Google Scholar
  26. 26.
    Michaelson, A., Contractor, N.S.: Structural Position and Perceived Similarity. Social Psychology Quarterly 55, 300–310 (1992)CrossRefGoogle Scholar
  27. 27.
    Coleman, J.S., Katz, E., Menzel, H.: The Diffusion of Innovation Among Physicians. Sociometry 20, 253–270 (1957)CrossRefGoogle Scholar
  28. 28.
    White, H.C.: Identity and Control: How social formations emerge. Princeton University Press, Princeton (2008)Google Scholar
  29. 29.
    Granovetter, M.S.: The Strength of Weak Ties. The American Journal of Sociology 78, 1360–1380 (1973)CrossRefGoogle Scholar
  30. 30.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology 27, 415–441 (2001)CrossRefGoogle Scholar
  31. 31.
    Valente, T.W., Pumpuang, P.: Identifying Opinion Leaders to Promote Behavior Change. Health Educ. Behav. 34, 881–896 (2007)CrossRefGoogle Scholar
  32. 32.
    Burt, R.S.: Structural Holes and Good Ideas. American Journal of Sociology 110, 349–399 (2004)CrossRefGoogle Scholar
  33. 33.
    Hargadon, A.B.: Brokering Knowledge: Linking Learning and Innovation. In: Staw, B.M., Kramer, R.M. (eds.) Research in Organizational Behavior, vol. 24, Elsevier Science Ltd., Amsterdam (2002)Google Scholar
  34. 34.
    Obstfeld, D.: Social Networks, the Tertius Iungens Orientation, and Involvement in Innovation. Administrative Science Quarterly 50, 100–130 (2005)Google Scholar
  35. 35.
    Cohen, S., Doyle, W.J., Skoner, D.P.M., Rabin, B.S., Gwaltney, J.M.J.: Social Ties and Suceptibility to the Common Cold. JAMA 277, 1044–1940 (1997)CrossRefGoogle Scholar
  36. 36.
    Burt, R.S.: Brokerage and Closure. Oxford University Press, New York (2005)Google Scholar
  37. 37.
    Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge (1992)Google Scholar
  38. 38.
    Baker, W.E.: Achieving Success Through Social Capital. Jossey-Bass Inc., San Francisco (2000)Google Scholar
  39. 39.
    Mehra, A., Kilduff, M., Brass, D.J.: The Social Networks of High and Low Self-Monitors: Implications for Workplace Performance. Administrative Science Quarterly 46, 121–146 (2001)CrossRefGoogle Scholar
  40. 40.
    Vodosek, M.: Personality and the Formation of Social Networks, The American Sociological Association, Atlanta, GA (2003)Google Scholar
  41. 41.
    Snyder, M.: Self-monitoring of expressive behavior. Journal of Personality and Social Psychology 30, 526–537 (1974)CrossRefGoogle Scholar
  42. 42.
    Lennox, R.D., Wolfe, R.N.: Revision of the Self-Monitoring Scale. Journal of Personality and Social Psychology 46, 1349–1364 (1984)CrossRefGoogle Scholar
  43. 43.
    Cramer, K.M., Gruman, J.A.: The Lennox and Wolfe Revised Self-Monitoring Scale: latent structure and gender invariance. Personality and Individual Differences 32, 627–637 (2002)CrossRefGoogle Scholar
  44. 44.
    Asugman, G., Eser, B., Bodur, M.: Opinion Leadership and Self-Monitoring: Evidence for the Two-Way Flow of Communication. Asia Pacific Advances in Consumer Research 1, 203–207 (1994)Google Scholar
  45. 45.
    Freeman, L.C.: Filling in the Blanks: A Theory of Cognitive Categories and the Structure of Social Affiliation. Social Psychology Quarterly 55, 118–127 (1992)CrossRefGoogle Scholar
  46. 46.
    Krackhardt, D.: Cognitive Social Structures. Social Networks 87, 109–134 (1987)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Tyler, J., Wilkinson, D., Huberman, B.: Email as spectroscopy: automated discovery of community structure within organizations. The Information Society 21, 143–153 (2005)CrossRefGoogle Scholar
  48. 48.
    Onnela, J.P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., Kaski, K., Kertesz, J., Barabasi, A.L.: Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences 104, 7332–7336 (2007)CrossRefGoogle Scholar
  49. 49.
    Travers, J., Milgram, S.: An Experimental Study of the Small World Problem. Sociometry 32, 425–443 (1969)CrossRefGoogle Scholar
  50. 50.
    Bush, V.: As We May Think. Atlantic Monthly (1945)Google Scholar
  51. 51.
    Wellman, B.: Are personal communities local? A Dumptarian reconsideration. Social Networks 18, 347–354 (1996)CrossRefGoogle Scholar
  52. 52.
    Hauben, R.: On the early days of usenet: The roots of the cooperative online culture (1995)Google Scholar
  53. 53.
    Monge, P.R., Contractor, N.S.: Theories of Communications Networks. Oxford University Press, New York (2003)Google Scholar
  54. 54.
    Michael, J.H.: Labor dispute reconcillation in a forest products manufacturing facility. Forest Products Journal 47, 41–45 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Donald Steiny
    • 1
  1. 1.Department of Information Processing ScienceUniversity of OuluOuluFinland

Personalised recommendations