Skip to main content

One-dimensional OCDMA Codes

  • Chapter
  • 769 Accesses

Abstract

In an OCDMA network, the transmission signal over a fiber-optic channel is formed by the superimposing of pseudorandom OCDMA signals encoded from multiple channels. The signal is broadcast to each node (subscriber) in the network and a receiver in each node decodes the signal. If the output of the decoder in this receiver is an autocorrelation, the node can detect the information sent to it from the aforementioned pseudorandom signals. Alternatively, if the output of the decoder is a cross-correlation function (no apparent peak value), then the node cannot receive the information. Therefore, in order to implement OCDMA communication and networking, address codes with sufficient performance are required. When a set of code parameters is chosen, a code can be constructed that has as many codewords (corresponding to the number of nodes in the network) as necessary and good enough auto- and cross-correlation so that accurate synchronization can be implemented and the interference (called multiple access interference, MAI) from other nodes can be suppressed effectively by decoding the signals. This requires that the address codes satisfy two conditions[1, 2] :

  • all address codewords can be easily identified from shifted versions, and

  • all address codewords can be easily distinguished from (a possibly shifted version of) every other codeword.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jawad.A. Salehi: Code division multiple-access techniques in optical fiber networks-part I: Fundamental principles. IEEE Trans. on Communications, Vol.37, No.8, Aug. 1989, pp824–833

    Article  Google Scholar 

  2. Jawad.A. Salehi and C. A. Brackett: Code division multiple-access techniques in optical fiber networks-part II: Systems performance analysis. IEEE Trans. on Communications, Vol.37, No.8, Aug. 1989, pp834–842

    Article  Google Scholar 

  3. Jawad. A. Salehi, F. R. K. Chung, and V. K. Wei: Optical orthogonal codes: Design, analysis, and applications. IEEE Trans. on Information theory, Vol.35, Nol.3, May 1989, pp595–605

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang Y. X., Ryoh F. H., Mao Y.: Combinational constructions of optical orthogonal codes with weight 4. IEEE Trans. on Information Theory, Vol.49, No.5, 2003, pp1283–1292

    Article  MATH  Google Scholar 

  5. Yixian Yang, Xuduan Lin: Coding Cryptography. Ren Min You Dian Press, China, 1992

    Google Scholar 

  6. H. Chung and P. Kumar: Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans. on Information theory, Vol.36, No.4, July 1990, pp866–873

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Petrovic: Orthogonal codes for CDMA optical fiber LAN’s with variable bit interval. IEE Electronics Letters, Vol.26, No.10, 1990, pp662–664

    Article  Google Scholar 

  8. S. V. Maric: A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks. IEEE Transactions on Communications, Vol.41, No.8, 1993, pp1217–1221

    Article  MATH  Google Scholar 

  9. S. V. Maric. New family of algebraically designed optical orthogonal codes for use in CDMA fiber-optic networks. IEE Electronics Letters, Vol.29, No.6, 1993, pp538–539

    Article  Google Scholar 

  10. Gun-Chang Yang: On the construction of 2n codes for optical code-division multiple-access. IEEE Trans. on Communications, Vol.43, No.2/3/4, 1995, pp495–502

    Article  MATH  Google Scholar 

  11. Guu-Chang Yang: Optical orthogonal codes with unequal auto-and cross-correlation constraints. IEEE Trans. on Information Theory, Vol.41, No.1, 1995, pp96–106

    Article  MATH  Google Scholar 

  12. S. V. Marec, Mark D. Hahm, Edward L. Titlebaum: Construction and performance analysis of a new family of optical orthogonal codes for CDMA fiber-optic networks. IEEE Trans. on Communications, Vol.43,No.2/3/4, 1995, pp485–489

    Article  Google Scholar 

  13. G C. Yang: Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans. on Communications, Vol.44, No.1, 1996, pp47–55

    Article  MATH  Google Scholar 

  14. Y. X. Chang, J. Yin: Further results on optimal optical orthogonal codes with weight 4. Discrete Mathematics, Vol.279, No.1, 2004, pp135–153

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Miyamoto, Mizuno H., Shinohara S.: Optical orthogonal codes obtained from conics on finite projective planes. Finite Fields & Their Applications, Vol. 10, No.3, 2004, pp405–411

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen Zhi, Fan Pingzhi, and Jin Fan: Disjoint deference sets, difference triangle sets, and related codes. IEEE Trans. on Information Theory, Vol.38, No.2, 1992, pp518–521

    Article  MathSciNet  Google Scholar 

  17. Abel R., Julian R., Buratti M.: Some progress on (v, 4,1) difference families and optical orthogonal codes. Journal of Combinational Theory-Series A, Vol.106, no.1, 2004, pp59–75

    Article  MATH  Google Scholar 

  18. Chu Wen S., Colomb S. W.: A new recursive construction for optical orthogonal codes. IEEE Trans. on Information Theory, Vol.49, No.11, 2003, pp3072–3076

    Article  Google Scholar 

  19. R. C. Bose: On the construction of balanced incomplete block designs. Ann. Eugenics, Vol. 9, 1993, pp353–399

    Google Scholar 

  20. R. M. Wilson: Cyclotomy and difference families in elementary Abelian groups. Journal of Number Theory, Vol. 4, 1972, pp17–47

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Khansefid: Sets of (0, l)-sequences with application to optical-fibre networks. Ph.D. dissertation, University of Southern California, Aug. 1988

    Google Scholar 

  22. Hall M.: Combinational Theory. 2nd Edition, John Wiley, 1986

    Google Scholar 

  23. Hanani H.: The existence and constructions of balanced incomplete block design. Ann. Math. Statist., Vol.32, 1961, pp361–386

    Article  MATH  MathSciNet  Google Scholar 

  24. Prucnal, P. R.: Santoro, M. A., Fan, T. R.: Spread Spectrum Fiber-optic Local Area Network Using Optical Processing. IEEE/OSA Journal of Lightwave Technology, Vol. 4, No. 5, May 1986, pp547–554

    Article  Google Scholar 

  25. G.-C. Yang and W. C. Kwong: Prime Codes with Applications to CDMA Optical and Wireless Networks. Norwood: Artech House, 2002

    Google Scholar 

  26. G.-C. Yang and Wing. C. Kwong: Performance analysis of optical CDMA with prime codes. IEE Electronics Letters, Vol.31, No.7, Mar. 1995, pp569–570

    Article  Google Scholar 

  27. J.-G. Zhang and W. C. Kwong: Effective design of optical code-division multiple access networks by using the modified prime code. IEE Electronics Letters, Vol.33, No.3, 1997, pp229–230

    Article  Google Scholar 

  28. Wing. C. Kwong, P. A. Perrier, and P. R. Prucnal: Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks. IEEE Trans. on Communications, Vol.39, No.11, Nov. 1991, pp1625–1634

    Article  Google Scholar 

  29. H. M. H. Shalaby: Synchronous fiber-optic CDMA systems with interference estimators. IEEE/OSA Journal of Lightwave Technology, Vol.17, No.11, Nov. 1999, pp2268–2275

    Article  Google Scholar 

  30. Z. Kostic: The design and performance analysis for several new classes of codes for optical synchronous CDMA and for arbitrary-medium time-hopping synchronous CDMA systems. IEEE Trans. on Communications, Vol.42, No.8, 1994, pp2608–2617

    Article  Google Scholar 

  31. Svetislav V. Marie, and Edward L. Titlebaum: A Class of Frequency Hop Codes with Nearly Ideal Characteristics for Use in Multiple-Access Spread-Spectrum Communications and Radar and Sonar Systems. IEEE Trans. on Communications, Vol.40, No. 9, September 1992, pp1442–1447

    Article  Google Scholar 

  32. Menghui Zheng and Alexander Albicki: A Modified Hyperbolic Congruential Frequency Hop Codes for Asynchronous Event Signaling. IEEE, 1995, pp666–670

    Google Scholar 

  33. Leszek D. Wronski. Razak Hossain, and Alexander Albicki: Extended Hyperbolic Congruential Frequency Hop Code: Generation and Bounds for Cross-and Auto-Ambiguity Function. IEEE Trans. on Communications, Vol. 44, No. 3, March 1996, pp301–305

    Article  Google Scholar 

  34. Razak Hossain, Leszek D. Wronski and Alexander Albicki: Signal Generation for Extended Hyperbolic Congruential Frequency Hop Codes. IEEE Trans. on Cricuits and Systems-II: Analog and Digital Signal Processing, Vol. 41, No. 1, January 1994, pp33–39

    Article  Google Scholar 

  35. Svetislav V. Maric, Edward L. Titlebaum: Frequency hop multiple access codes based upon the theory of cubic congruence. IEEE Trans. on Aerospace and Electronic Systems, Vol.26, No.6, 1990, pp1035–1039

    Article  MathSciNet  Google Scholar 

  36. Zhigang Cao, Yasheng Qian: The principle of modern telecommunication. Tsinghua University Press, 1992

    Google Scholar 

  37. R. C. Dixon: Spread spectrum system. A Wiley-Interscience Publication, 1976, pp53–92

    Google Scholar 

  38. V. K. Bhargava, D. Haccoun, R. Matyas and P. P. Nuspl: Digital communications by satellite-modulation, multiple access and coding. A Wiley-Interscience Publication, 1981, pp269–292

    Google Scholar 

  39. Serdar Boztas, Roger Hammons and P Vijay Kumar: 4-phase sequences with near-optimum correlation properties. IEEE Trans. on Information Theory, Vol.38, No.3, May 1992, pp1101–1113

    Article  MATH  Google Scholar 

  40. P. R. Prucnal, et. al.: Optical code division multiple access: fundamentals and application. CRC Press, Taylor & Francis Group, 2006, pp55

    Google Scholar 

  41. Sangin Kim, Kyungsik Yu, and Namkyoo Park: A New Family of Space/Wavelength/Time Spread Three-Dimensional Optical Code for OCDMA Networks. IEEE/OSA Journal of Lightwave Technology, Vol. 18, No. 4, April 2000, pp502–511

    Article  Google Scholar 

  42. L. Tancevski and I. Andonovic: Wavelength hopping/time spreading code division multiple access systems. IEE Electronics Letters, Vol.30, No.17, 1994, pp1388–1390

    Article  Google Scholar 

  43. G.-C. Yang and Wing C. Kwong: Performance Comparison of Multiwavelength CDMA and WDMA + CDMA for Fiber-Optic Networks. IEEE Trans. on Communications, Vol.45, No.11, November 1997, pp1426–1434

    Article  Google Scholar 

  44. W. C. Kwong, G.-C. Yang, V. Baba, C.-S. Bres, P. R. Prucnal: Multiple-wavlength optical orthogonal codes under prime-sequence permutations for optical CDMA. IEEE Trans. on Communications, Vol.53, No.1, Jan. 2005, pp117–123

    Article  Google Scholar 

  45. S. P. Wan and Y. Hu: Two-dimensional optical system with prime/OOC codes. IEEE Photonics Technology Letters, Vol.13, No.13, Dec. 2001, pp1373–1375

    Google Scholar 

  46. L. Tancevski, Ivan Andonovic: Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security. IEEE/OSA Journal of Lightwave Technology, Vol.4, No.12, Dec. 1996, pp2636–2647

    Article  Google Scholar 

  47. L. Tancevski and I. Andonovic, M. Tur and J. Budin: Massive optical LANs using wavelength hopping/time spreading with increased security. IEEE Photonics Technology Letters, Vol.8, No.13, Jul. 1996, pp935–937

    Article  Google Scholar 

  48. Shurong Sun, Hongxi Yin, Ziyu Wang, Anshi Xu: A New Family of 2-D Optical Orthogonal Codes and Analysis of its Performance in Optical CDMA Access Networks. IEEE/OSA Journal of Lightwave Technology, Vol.24, No.4, 2006, pp1646–1653

    Article  Google Scholar 

  49. Rogério N. Nogueira, Antonio L. J. Teixeira, João L. Pinto, José F. Rocha: Polarization-Assisted OCDMA Using Fiber Bragg Gratings Written in Highly Birefringent Fibers. IEEE Photonics Technology Letters, Vol.18, No.7, 2006, pp841–843

    Article  Google Scholar 

  50. Y. Frignac, G. Charlet, W. Idler, R. Dischler, P. Tran, S. Lanne, S. Borne, C. Martinelli, G. Veith, A. Jourdan, J.-P. Hamaide, and S. Bigo: Transmission of 256 wavelength-division and polarization-division multiplexed channels at 42.7 Gb/s (10.2 Tb/s capacity) over 3×100 km of TeraLight fiber. OFC’2002, pp FC5-1–FC5-3

    Google Scholar 

  51. John E. McGeehan, S. M. R. Motaghian Nezam, P. Saghari, Alan E. Willner, Reza Omrani, P. Vijay Kumar: Experimental Demonstration of OCDMA Transmission Using a Three-Dimensional (Time-Wavelength-Polarization) Codeset. IEEE/OSA Journal of Lightwave Technology, Vol. 23, No. 10, 2005, pp3282–3286

    Article  Google Scholar 

  52. Svetislav V. Maric, Oscar Moreno, Carlos J. Corrada: Multimedia Transmission in Fiber-optic LAN’s Using Optical CDMA. IEEE/OSA Journal of Lightwave Technology, Vol. 14, No. 10, 1996, pp2149–2153

    Article  Google Scholar 

  53. Wing C. Kwong, and Guu-Chang Yang: Multiple-Length Extended Carrier-Hopping Prime Codes for Optical CDMA Systems Supporting Multirate Multimedia Services. IEEE/OSA Journal of Lightwave Technology, Vol.23, No.11, 2005, pp3653–3662

    Article  Google Scholar 

  54. Naser G. Tarhuni, Timo O. Korhonen, Edward Mutafungwa, Mohammed S. Elmusrati: Multiclass Optical Orthogonal Codes for Multiservice Optical CDMA Networks. IEEE/OSA Journal of Lightwave Technology, Vol.24, No.2, 2006, pp694–704

    Article  Google Scholar 

  55. D.E. Leaird, Z. Jiang and A.M. Weiner: Experimental investigation of security issues in OCDMA: a code-switching scheme. IEE Electronics Letters, Vol.41 No.14, 2005, pp817–819

    Article  Google Scholar 

  56. Thomas H. Shake: Security Performance of Optical CDMA against Eavesdropping. IEEE/OSA Journal of Lightwave Technology, Vol. 23, No. 2, 2005, pp655–670

    Article  Google Scholar 

  57. Thomas H. Shake: Confidentiality Performance of Spectral-Phase-Encoded Optical CDMA. IEEE/OSA Journal of Lightwave Technology, Vol.23, No.4, April 2005, pp1652–1663

    Article  Google Scholar 

  58. Cedric F. Lam, Dennis T. K. Tong, Ming C. Wu, Eli Yablonovitch: Experimental Demonstration of Bipolar Optical CDMA System Using a Balanced Transmitter and Complementary Spectral Encoding. IEEE Photonics Technology Letters, Vol.10, No.10, 1998, pp1504–1506

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2007). One-dimensional OCDMA Codes. In: Optical Code Division Multiple Access Communication Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68468-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68468-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68445-9

  • Online ISBN: 978-3-540-68468-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics