Skip to main content
  • 769 Accesses

Abstract

Optical fiber communication is a communication approach to transport information from one point to another using light as a carrier and optical fibers as transmission media. In ancient times, in order to speed up information transmission, people learned how to use optical signals, such as smoke signals, semaphores, etc., to communicate. However, the utility of these methods was very limited. In the early 1960s, American physicists invented the ruby laser[1], and the proposals for optical communication via dielectric waveguides or glass optical fibers to avoid degradation of the optical signal by the atmosphere were made almost simultaneously in 1966 by Kao and Hockham[2] and Werts[3]. Initially the optical fibers exhibited very high attenuation (i.e., 1000dB/km) and were therefore not competitive with the coaxial cables which they were to replace (i.e., 5 to 10dB/km). In 1970, the Corning Company in America manufactured a fiber-optic with attenuation of 17dB/km, and the optical fiber losses at 1310 nm wavelength were reduced to 0.3dB/km[4] in 1974. In 1977, the field trial of the first commercial use of the multimode fibers between two telephone offices in Chicago 7000 meters distant was made successfully[5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. H. Maiman: Stimulated optical radiation in ruby. Nature, London, 1987, 1960, pp493–494

    Google Scholar 

  2. K. C. Kao and G. A. Hockham:Dielectric fibre surface waveguides for optical frequencies. Proc. IEE, 113(7), 1966, pp1151–1158

    Google Scholar 

  3. A. Werts: Propagation de la lumiere coherente dans les fibres optiques. L’Onde Electrique, 460, 1966, pp967–998

    Google Scholar 

  4. http://www.corning.com

    Google Scholar 

  5. http://www.ofsoptics.com/labs

    Google Scholar 

  6. John M. Senior: Optical fibre communications: principles and practice.-Second Edition, Prentice Hall, 1992

    Google Scholar 

  7. John M. Senior: Wavelength division in optical fibre networks. Communications Internat., 15(4), 1988, pp52–54

    Google Scholar 

  8. W. Y. Gu: Optical fiber communication system. Gao Deng Jiao Yu Press, China, 2001

    Google Scholar 

  9. R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne: Low-noise erbium-doped fibre amplifier operating at 1.54 µm. IEE Electronics Letters, Vol.23(19), 1987, pp1026–1028

    Article  Google Scholar 

  10. ITU-T G.709/Y.1331: Optical Transport Network (OTN). http://www.itu.int/rec/T-rec-G.709, 2001

    Google Scholar 

  11. ITU Draft Recommendation G.807/Y.1302: Requirements for the Automatic Switched Transport Network(ASTN). July 2001

    Google Scholar 

  12. ITU Draft Recommendation G.8080/Y.1304: Architecture for the Automatic Switched Optical Network. November 2001

    Google Scholar 

  13. ITU Draft Recommendation G.7715/Y.1706: Architecture and Requirements for Routing in automatically Switched Optical Networks. 2002

    Google Scholar 

  14. Glen Kramer and Gerry Pesavento, Alloptic, Inc.: Ethernet passive optical network (EPON): building a next-generation optical access network. IEEE Communications Magazine, Feb. 2002, pp66–73

    Google Scholar 

  15. http://www.ccidedu.com: The comparison of the advantage and disadvantage between two networking techniques: ADSL and Cable Modem.

    Google Scholar 

  16. Jani Saheb Shaik, N R Patil: FTTH Deployment Options for Telecom Operators. Sterlite Optical Technologies Ltd, http://www.sterliteoptical.com

    Google Scholar 

  17. http://en.wikipedia.org/wiki/Passive_Optical_Network: Passive Optical Network.

    Google Scholar 

  18. http://www.iec.org: Ethernet Passive Optical Networks. The International Engineering Consortium.

    Google Scholar 

  19. Amitabha Banerjee, Youngil Park, Frederick Clarke and Huan Song, Sunhee Yang, Glen Kramer, Kwangjoon Kim, Biswanath Mukherjee: Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review (Invited), Journal of Optical Networking, Vol.4, No.11, November 2005, pp737–758

    Article  Google Scholar 

  20. R. Lauder: Technology and economics for coarse wavelength multiplexing workshop. http://ieeexplore.ieee.org (2004)

    Google Scholar 

  21. T. Fujii, K. Shirakawa, M. Nomura, and T. Yamaguchi: Cinema-class digital content distribution via optical networks (Invited). in Proc. OpNeTec, Pisa, Italy, Oct. 2004, pp11–18

    Google Scholar 

  22. Ken-ichi Kitayama, Xu Wang, and Naoya Wada: OCDMA over WDM PON-Solution Path to Gigabit-Symmetric FTTH. IEEE/OSA Journal of Lightwave Technology, Vol.24, No.4, April 2006, pp1654–1662

    Article  Google Scholar 

  23. Prucnal, P. R., Santoro, M. A., Fan, T. R.: Spread Spectrum Fiber-optic Local Area Network Using Optical Processing. IEEE/OSA Journal of Lightwave Technology, Vol.4, No.5, May 1986, pp547–554

    Article  Google Scholar 

  24. Prucnal, R. P, Santoro, M. A., Sehgal, S. K.: Ultrafast All-Optical Synchronous Multiple Access Fiber Networks. IEEE Journal on Selected Areas in Communications, Vol.4, No. 9, 1986, pp1484–1494

    Article  Google Scholar 

  25. Weiner, A. M., Heritage, J. P. and Salehi, J. A.: Encoding and decoding of femtosecond pulse. Optics Letters, Vol.13, No.4, May 1988, pp300–302

    Article  Google Scholar 

  26. Jawad.A. Salehi: Code division multiple-access techniques in optical fiber networks-part I: Fundamental principles. IEEE Trans. on Communications, Vol.37, No.8, Aug. 1989, pp824–833

    Article  Google Scholar 

  27. Jawad.A. Salehi and C. A. Brackett: Code division multiple-access techniques in optical fiber networks-part II: Systems performance analysis. IEEE Trans. on Communications, Vol.37, No.8, Aug. 1989, pp834–842

    Article  Google Scholar 

  28. Jawad.A. Salehi, F. R. K. Chung, and V. K. Wei: Optical orthogonal codes: Design, analysis, and applications. IEEE Trans. on Information Theory, Vol.35, No.3, May 1989, pp595–605

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Chung and P. Kumar: Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans. on Information theory, Vol.36, No.4, July 1990, pp866–873

    Article  MATH  MathSciNet  Google Scholar 

  30. A. S. Holmes and R. R. Syms: All-optical CDMA using “quasi-prime” codes. IEEE/OSA Journal of Lightwave Technology, Vol.10, No.2, Feb. 1992, pp279–286

    Article  Google Scholar 

  31. S. V. Maric, Z. I. Kostic, and E. L. Titlebaum: A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks. IEEE Trans. on Communications, Vol.41, No.8, Aug. 1993, pp1217–1221

    Article  MATH  Google Scholar 

  32. G.-C. Yang and Wing. C. Kwong: Performance analysis of optical CDMA with prime codes. IEE Electronics Letters, Vol.31, No.7, Mar. 1995, pp569–570

    Article  Google Scholar 

  33. Wing. C. Kwong, P. A. Perrier, and P. R. Prucnal: Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks. IEEE Trans. on Communications, Vol.39, No.11, Nov. 1991, pp1625–1634

    Article  Google Scholar 

  34. S. V. Maric: New family of algebraically designed optical orthogonal codes for use in CDMA fiber-optic networks. IEE Electronics Letters, Vol.29, No.6, Feb./Mar./Apr. 1993, pp538–539

    Article  Google Scholar 

  35. Eugene Park, Antonio J. Mendez, and Elsa M. Garmire: Temporal/spatial optical CDMA networks-design, demonstration, and comparison with temporal networks. IEEE Photonics Technology Letters, Vol. 4, No.10, Oct. 1992, pp1160–1162

    Article  Google Scholar 

  36. Tancevski L., Andonovic I.: Wavelength hopping/time spreading code division multiple access systems. IEE Electronics Letters, Vol. 30 No. 17, August 1994, pp1388–1390

    Article  Google Scholar 

  37. L. Tancevski, I. Andonovic, M. Tur, and J. Budin:Hybrid wavelength hopping/time spreading code division multiple access systems. IEE Proc.-Optoelectron., Vol.143, June 1996, pp161–166

    Article  Google Scholar 

  38. L. Tancevski, and I. Andonovic: Hybrid wavelength-hopping/time-spreading schemes for use in massive optical networks with increased security. IEEE/OSA Journal of Lightwave Technology, Vol.14, No.12, Dec. 1996, pp2636–2646

    Article  Google Scholar 

  39. G. C. Yang, W. C. Kong: Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks. IEEE Trans. on Communications Vol.45, No.11, Nov. 1997, pp1426–1434

    Article  Google Scholar 

  40. Sangin. Kim, Kyungsik Yu and Namkyoo Park: A new family of space/wavelength/time spread three-dimensional optical code for OCDMA networks. IEEE/OSA Journal of Lightwave technology, vol.18, No.4, April 2000, pp502–511

    Article  Google Scholar 

  41. Raymond M. H. Yim, Jan Bajcsy and R. Chen:A new family of 2-D wavelength-time codes for optical CDMA with differential detection. IEEE Photonics Technology Letters, Vol.15, No.1, Jan. 2003, pp165–167

    Article  Google Scholar 

  42. Svetislav V. Maric, Vincent K. N. Lau: Multirate Fiber-Optic CDMA: System Design and Performance Analysis. IEEE/OSA Journal of Lightwave Technology, Vol.16, No. 1, Jan. 1998, pp9–17

    Article  Google Scholar 

  43. Naser G. Tarhuni, Timo O. Korhonen, Edward Mutafungwa, Mohammed S. Elmusrati: Multiclass Optical Orthogonal Codes for Multiservice Optical CDMA Networks. IEEE/OSA Journal of Lightwave Technology, Vol.24, No.2, Feb. 2006, pp694–704

    Article  Google Scholar 

  44. H. Ben Jaafar, S. LaRochelle, P.-Y. Cortes, H. Fathallah: 1.25 Gbit/s transmission of optical FFH-OCDMA signals over 80 km with 16 users. OFC2001, TuV3-1

    Google Scholar 

  45. Camille-Sophie Brès, Ivan Glesk, Paul R. Prucnal: Demonstration of an Eight-User 115-Gchip/s Incoherent OCDMA System Using Supercontinuum Generation and Optical Time Gating. IEEE Photonics Technology Letters, Vol.18, No.7, 2006, pp889–891

    Article  Google Scholar 

  46. P. Saghari, P. Kamath, V. Arbab, M. Haghi, A. E. Willner, J. A. Bannister, J. D. Touch: Experimental demonstration of an interference-avoidance-based protocol for O-CDMA network. OFC’2006, PDP46

    Google Scholar 

  47. Cedric F. Lam, Dennis T. K. Tong, Ming C. Wu, Eli Yablonovitch: Experimental Demonstration of Bipolar Optical CDMA System Using a Balanced Transmitter and Complementary Spectral Encoding. IEEE Photonics Technology Letters, Vol.10, No.10, 1998, pp1504–1506

    Article  Google Scholar 

  48. Lim Nguyen, Tasshi Dennis, Behnaam Aazhang, James F. Young: Experimental Demonstration of Bipolar Codes for Optical Spectral Amplitude CDMA Communication. IEEE/OSA Journal of Lightwave Technology, Vol.15, No.9, Sept. 1997, pp1647–1653

    Article  Google Scholar 

  49. V. K. Bhargava, D. Haccoun, R. Matyas and P. P. Nuspl: Digital communications by satellite modulation, multiple access and coding. Wiley-Interscience, 1981, pp269–292

    Google Scholar 

  50. Yixian Yang, Xuduan Lin:Coding Cryptography. Ren Min You Dian Press, China, 1992

    Google Scholar 

  51. P. R. Prucnal, et. al.: Optical code division multiple access: fundamentals and application. CRC Press, Taylor &Francis Group, 2006, pp56

    Google Scholar 

  52. Naoya Wada, Ken-Ichi Kitayama: A 10 Gb/s Optical Code Division Multiplexing Using 8-Chip Optical Bipolar Code and Coherent Detection. IEEE/OSA Journal of Lightwave Technology, Vol.17, No.10, 1999, pp1758–1765

    Article  Google Scholar 

  53. Chau-Han Lee, Shan Zhong, Xiao Lin, J.F. Young and, Y.J. Chen: Planar lightwave circuit design for programmable complementary spectral keying encoder and decoder. IEE Electronics Letters, Vol.35, No.21, 1999, pp1813–1815

    Article  Google Scholar 

  54. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson: Phase Encoding and Decoding of Short Pulses at 10 Gb/s Using Superstructured Fiber Bragg Gratings. IEEE Photonics Technology Letters, Vol. 13, No. 2, 2001, pp154–156

    Article  Google Scholar 

  55. Zou Wei, H. Ghafouri-Shiraz, and H. M. H. Shalaby: A New Code Families for Fiber-Bragg-Grating-Based Spectral-Amplitude-Coding Optical CDMA Systems. IEEE Photonics Technology Letters, Vol.13, No.8, 2001, pp890–892

    Article  Google Scholar 

  56. A. Grunnet-Jepsen, A.E. Johnson, E.S. Maniloff, T.W. Mossberg, M.J. Munroe and J.N. Sweetser: Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA. IEE Electronics Letters, Vol.35, No.13, 1999, pp1096–1097

    Article  Google Scholar 

  57. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser: Demonstration of All-Fiber Sparse Lightwave CDMA Based on Temporal Phase Encoding. IEEE Photonics Technology Letters, Vol.11, No.10, 1999, pp1283–1285

    Article  Google Scholar 

  58. N. Wada, H. Sotobayashi and K. Kitayama: 2.5Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source. IEE Electronics Letters, Vol.36, No.9, 2000, pp815–817

    Article  Google Scholar 

  59. Xu Wang, Naoya Wada, Tessuya Miyazaki, Gabrilla Cincotti and Ken-ich Kitayama: Field Trial of 3-WDM × 10-OCDMA × 10.71Gbps, truly-asynchronous, WDM/DPSK-OCDMA using hybrid E/D without FEC and optical threshold. OFC’2006, PDP44

    Google Scholar 

  60. V. J. Hernandez, W. Cong, R. P. Scott, C. Yang, N. K. Fontaine, B. H. Kolner, J. P. Heritage, S. J. B. Yoo: 320-Gb/s capacity (32users × 10Gb/s SPECTS O-CDMA local area network testbed. OFC’2006, PDP45

    Google Scholar 

  61. Jagdeep Shah: Optical OCDMA. Optics & Photonics News, April 2003, pp42–47

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Introduction. In: Optical Code Division Multiple Access Communication Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68468-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68468-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68445-9

  • Online ISBN: 978-3-540-68468-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics