Skip to main content

Studies of light scattering by complex particles using the null-field method with discrete sources

  • Chapter
Light Scattering Reviews 2

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Light scattering has an increasing importance in modern technologies. Examples are characterization of particles in natural or technical environments, surface characterization, biomedical sensing and nanotechnology. As a consequence, the development of accurate and fast methods devoted to the numerical simulation of electromagnetic and light scattering has become of fundamental importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. A. Eremin and A. G. Sveshnikov: A computer technology for the discrete source method in scattering problems. Computational Mathematics and Modeling, 14 (2003) 1, 16–25.

    Article  Google Scholar 

  2. V. D. Kupradze and M. A. Aleksidze: The method of functional equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys., 4 (1964) 4, 82–126.

    Article  Google Scholar 

  3. A. Doicu, Y. A. Eremin, T. Wriedt: Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources. Academic Press, San Diego 2000.

    Google Scholar 

  4. G. Fairweather and A. Karageorghis: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math., 9 (1998), 69–95.

    Article  Google Scholar 

  5. G. Fairweather, A. Karageorghis, P. A. Martin: The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements, 27 (2003), 759–769.

    Article  Google Scholar 

  6. T. Wriedt (Ed.): Generalized Multipole Techniques for Electromagnetic and Light Scattering. Elsevier, Amsterdam 1999.

    Google Scholar 

  7. M. Katsurada, A mathematical study of the charge simulation method II, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 36 (1989), 135–162.

    Google Scholar 

  8. M. Kawano, H. Ikuno, M. Nishimoto: Numerical analysis of 3-D scattering problems using the Yasuura method. IEICE Trans. Electron. E79-C (1996), 1358–1363.

    Google Scholar 

  9. Ch. Hafner, Post-modern Electromagnetics Using Intelligent MaXwell Solvers. John Wiley & Sons, Chichester 1999.

    Google Scholar 

  10. D. I. Kaklamani and H. T. Anastassiu: Aspects of the method of auxiliary sources in computational electromagnetics. IEEE Antennas and Propagation Magazine 44 (2002) 3, 48–64.

    Article  Google Scholar 

  11. M. Nishimura, S. Takamatsu, and H. Shigesawa: A numerical analysis of electromagnetic scattering of perfect conducting cylinders by means of discrete singularity method improved by optimization process. Electronics and Communications in Japan, 67-B (1984) 5, 552–558.

    Google Scholar 

  12. Y. Leviatan, Z. Baharav, E. Heyman: Analysis of electromagnetic scattering using arrays of fictitious sources. IEEE Trans. Antennas Propagat., AP-43 (1995) 10, 1091–1098.

    Article  Google Scholar 

  13. D. Maystre, M. Saillard, G. Tayeb: Special methods of wave diffraction. in P. Sabatier and E.R. Pike (Eds): Scattering. Academic Press, London 2001.

    Google Scholar 

  14. M. A. Golberg and C. S. Chen: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In M. A. Golberg (Ed.): Boundary Integral Methods and Mathematical Aspects. WIT Press/Computational Mechanics Publications, Boston 1999, 103–176.

    Google Scholar 

  15. A. C. Ludwig: The generalized multipole technique. Comput. Phys. Commun. 68 (1991), 306–314.

    Article  Google Scholar 

  16. P. C. Waterman: Numerical solution of electromagnetic scattering problems. In R. Mittra: Computer techniques for electromagnetics. Pergamon Press, New York 1973, 97–157.

    Google Scholar 

  17. P. C. Waterman: Matrix formulation of electromagnetic scattering. Proc. IEEE 53 (1965), 803–812.

    Article  Google Scholar 

  18. V. K. Varadan and V. V. Varadan (Ed): Recent Developments in Classical Wave Scattering: Focus on the T-matrix. Pergamon Press, Oxford 1980.

    Google Scholar 

  19. P. W. Barber: Differential scattering of electromagnetic waves by homogeneous isotropic dielectric bodies. Ph.D. thesis, University of California, Los Angeles 1973.

    Google Scholar 

  20. J. B. Schneider and I. C. Peden: Differential cross section of a dielectric ellipsoid by the T-matrix extended boundary condition method. IEEE Trans. Antennas Propagat. AP 36 (1978), 1317–1321.

    Google Scholar 

  21. T. Wriedt and A. Doicu: Formulation of the extended boundary condition method for three-dimensional scattering using the method of discrete sources. Journal of Modern Optics 45 (1998) 1, 199–213.

    Article  Google Scholar 

  22. H. Laitinen and K. Lumme: T-matrix method for general star-shaped particles: first results. J. Quant. Spectrosc. Radiat. Transfer, 60 (1998), 325–334.

    Article  Google Scholar 

  23. F. M. Kahnert, J. J. Stamnes, K. Stamnes: Application of the extended boundary condition method to particles with sharp edges: a comparison of two surface integration approaches. Applied Optics, 40 (2001), 3101–3109.

    Google Scholar 

  24. S. Havemann and A. J. Baran: Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders. J. Quant. Spectrosc. Radiat. Transfer, 70 (2001), 139–158.

    Article  Google Scholar 

  25. M. I. Mishchenko, L. D. Travis, D. W. Mackowski: T-matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc. Radiat. Transfer, 55 (1996), 535–575.

    Article  Google Scholar 

  26. M. I. Mishchenko, J. W. Hovenier, L. D. Travis (Eds): Light Scattering by Nonspherical Particles. Academic Press, San Diego 2000.

    Google Scholar 

  27. M. I. Mishchenko, L. D. Travis, A. A. Lacis: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge 2002.

    Google Scholar 

  28. F. Borghese, P. Dentl, R. Saija: Scattering from Model Nonspherical Particles. Theory and Applications to Environmental Physics. Springer Verlag, Berlin 2003.

    Google Scholar 

  29. M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, T. Wriedt: T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J. Quant. Spectrosc. Radiat. Transfer, 88 (2004), 357–406.

    Google Scholar 

  30. HyperFun Project, Language and Software Tools for F-rep Geometric Modeling. www.hyperfun.org.

    Google Scholar 

  31. K. Georg and J. Tausch: Some error estimares for the numerical approximation of surface integrals. Math. Comp., 62 (1994), 755–763.

    Article  Google Scholar 

  32. S. Pulbere, T. Wriedt: Light scattering by cylindrical fibers with high aspect ratio using the null-field method with discrete sources Part. Part. Syst. Charact., 21 (2004), 213–218.

    Article  Google Scholar 

  33. A. Doicu and T. Wriedt: Extended boundary condition method with multipole sources located in the complex plane. Optics Commun., 139 (1997), 85–91.

    Article  Google Scholar 

  34. J. Hellmers, T. Wriedt, A. Doicu: Light scattering simulation by oblate disc spheres using the null field method with discrete sources located in the complex plane. Journal of Modern Optics, 53 (2006) 3, 267–282.

    Article  Google Scholar 

  35. J. Hellmers, E. Eremina, T. Wriedt: Simulation of light scattering by biconcave Cassini ovals using the nullfield method with discrete sources. Journal of Optics A, 8 (2006), 1–9.

    Google Scholar 

  36. T. Wriedt, J. Hellmers, E. Eremina, R. Schuh: Light scattering by single erythrocyte: Comparison of different methods. J. Quant. Spectrosc. Radiat. Transfer, 100 (2006), 444–456.

    Article  Google Scholar 

  37. A. Doicu: Null-field method to electromagnetic scattering from uniaxial anisotropic particles. Optics Commun., 218 (2003) 1–3, 11–17.

    Article  Google Scholar 

  38. J. Hellmers and T. Wriedt: Influence of particle shape models on T-matrix light scattering simulation. J. Quant. Spectrosc. Radiat. Transfer, 89 (2004), 97–110.

    Article  Google Scholar 

  39. T. Wriedt: Using the T-matrix method for light scattering computations by non-axisymmetric particles: Superellipsoids and realistically shaped particles. Part. Part. Syst. Charact., 19 (2002) 4, 256–268.

    Article  Google Scholar 

  40. A. Doicu, T. Wriedt, Yuri Eremin: Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources — Theory and Programs. Springer Verlag, Berlin, Heidelberg, New York 2006.

    Google Scholar 

  41. Triangles, a triangle mesh construction utility: http://www.geocities.com/Athens/Academy/8764/triangles.htm.

    Google Scholar 

  42. Systems in Motion AS, www.sim.no.

    Google Scholar 

  43. N. Riefler, S. di Stasio, T. Wriedt: Structural analysis of clusters using configurational and orientational averaging in light scattering analysis. J. Quant. Spectrosc. Radiat. Transfer, 89 (2004), 323–342.

    Article  Google Scholar 

  44. A. Doicu and T. Wriedt: T-matrix method for electromagnetic scattering from scatteres with complex structure. J. Quant. Spectrosc. Radiat. Transfer, 70 (2001), 663–673.

    Article  Google Scholar 

  45. R. Schuh and T. Wriedt: Computer programs for light scattering by particles with inclusions. J. Quant. Spectrosc. Radiat. Transfer, 70 (2001), 715–723.

    Article  Google Scholar 

  46. T. Wriedt and A. Doicu: T-matrix method for light scattering from particles on or near an infinite surface. in F. Moreno and F. González (Eds): Light Scattering from Microstructures. Springer Verlag, Berlin 2000, 113–132.

    Google Scholar 

  47. P. B. Johnson and R. W. Christy: Optical constants of noble metals. Phys. Rev. B, 6 (1972), 4370–4379.

    Article  Google Scholar 

  48. A. Hizal and A. Marincic: New rigorous formulation of electromagnetic scattering from perfectly conducting bodies of arbitrary shape. Proc. IEE, 117 (1970) 8, 1639–1647.

    Google Scholar 

  49. E. Eremina, Y. Eremin, T. Wriedt: Review of light scattering by fiber particles with a high aspect ratio. Recent Res. Devel. Optics, 3 (2003), 297–318.

    Google Scholar 

  50. L. Helden, E. Eremina, N. Riefler, Ch. Hertlein, C. Bechinger, Y. Erimin, T. Wriedt: Single particle evanescent light scattering simulations for total internal reflection microscopy. Applied Optics, submitted.

    Google Scholar 

  51. Ch. Hafner and L. Bomholt: The 3D Electromagnetic Wave Simulator, 3D MMP Software and User’s Guide. Wiley, Chichester 1993.

    Google Scholar 

  52. B. T. Draine and P. J. Flatau: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11 (1994), 1491–1499.

    Article  Google Scholar 

  53. The Discrete Dipole Approximation for Scattering and Absorption of Light by Irregular Particles. www.astro.princeton.edu/∼draine/DDSCAT.html.

    Google Scholar 

  54. T. Wriedt and U. Comberg: Comparison of computational scattering methods. J. Quant. Spectrosc. Radiat. Transfer, 60 (1998) 3, 411–423.

    Article  Google Scholar 

  55. T. Weiland: A discretization method for the solution of Maxwell’s equation for six-components fields. Electron. Commun. AEÜ, 31 (1977), 116–120.

    Google Scholar 

  56. Computer Simulation Technology GmbH, www.cst.de.

    Google Scholar 

  57. A. Doicu, T. Wriedt, K. Bauckhage: Light scattering by homogeneous axisymmetrical particles for PDA calculations to measure both axes of spheroidal particles. Part. Part. Syst. Charact., 14 (1997), 3–11.

    Google Scholar 

  58. A. Doicu, J. Köser, T. Wriedt, K. Bauckhage: Light scattering simulation and measurement of monodisperse spheroids using a Phase Doppler Anemometer. Part. Part. Syst. Charac., 15 (1999), 257–262.

    Article  Google Scholar 

  59. A. Doicu and T. Wriedt: Null-field method with discrete sources to electromagnetic scattering from layered scatterers. Comput. Phys. Commun., 138 (2001), 136–142.

    Article  Google Scholar 

  60. A. Doicu and T. Wriedt: Null-field method with discrete sources to electromagnetic scattering from composite scatterers. Optics Commun., 190 (2001), 13–17.

    Article  Google Scholar 

  61. A. Doicu and T. Wriedt: Formulations of the extended boundary condition method for incident Gaussian beams using multiple multipole expansions. Journal of Modern Optics, 44 (1997) 4, 785–801.

    Article  Google Scholar 

  62. A. Doicu, Yu. Eremin, T. Wriedt: Scattering of evanescent waves by a particle on or near a plane surface. Comput. Phys. Commun., 134 (2001), 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Wriedt, T. (2007). Studies of light scattering by complex particles using the null-field method with discrete sources. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 2. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68435-0_7

Download citation

Publish with us

Policies and ethics