Skip to main content

Retrieval of cloud optical thickness and effective radius using multispectral remote sensing and accounting for 3D effects

  • Chapter

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Understanding spatial and temporal variations in cloud properties is crucial to determine the radiation balance on Earth. Remote sensing from satellites provides valuable information on cloud physical properties at global scales (e.g., Rossow and Schiffer, 1991). Recent Earth-observing sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Global Imager (GLI), have well-designed spectral channels and horizontal resolutions between 250m and 1000 m. Compared to earlier sensors, these sensors allow improved derivations of atmospheric and land surface properties. Operational products include the cloud optical thickness and effective particle radius, which are very useful for studying aerosols’ indirect effects (Radke et al., 1989; Rosenfeld, 2000).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, H. W., and J. A. Davies, 1992: Cumulus cloud radiative properties and the characteristics of satellite radiance wavenumber spectra. Remote Sens. Environ., 42, 51–64.

    Article  Google Scholar 

  • Barker, H. W., and D. Liu, 1995: Inferring optical depth of broken clouds from Landsat data. J. Climate, 8, 2620–2630.

    Article  Google Scholar 

  • Barker, H. W., 1996: Estimating cloud field albedo using one-dimensional series of optical depth. J. Atmos. Sci., 53, 2826–2836.

    Article  Google Scholar 

  • Boers, R., J. D. Spinhirne, and W. D. Hart, 1988: Lidar observations of the fine-scale variability of marine stratocumulus clouds. J. Appl. Meteor., 27, 797–810.

    Article  Google Scholar 

  • Bower, K. N., T. W. Choularton, J. Latham, J. Nelson, M. B. Baker, and J. Jensen, 1994: A parameterization of warm clouds for use in atmospheric general circulation models. J. Atmos. Sci., 51, 2722–2732.

    Article  Google Scholar 

  • Brenguiter, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Effective droplet radius versus number concentration. J. Atmos. Sci., 57, 803–821.

    Article  Google Scholar 

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994a: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 2434–2455.

    Article  Google Scholar 

  • Cahalan, R. F., W. Ridgway, and W. J. Wiscombe, 1994b: Independent pixel and Monte Carlo estimates of the stratocumulus albedo. J. Atmos. Sci., 51, 3776–3790.

    Article  Google Scholar 

  • Chambers, L. H., B. A. Wielicki, and K. F. Evans, 1997: Accuracy of the independent pixel approximation for satellite estimates of oceanic boundary layer cloud optical depth. J. Geophys. Res., 102, 1779–1794.

    Article  Google Scholar 

  • Davis, A. B., A. Marshak, R. F. Cahalan, and W. J. Wiscombe, 1997: The Landsat scale break in stratocumulus as a three-dimensional radiative transfer effect: Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.

    Article  Google Scholar 

  • Drake, F., 1993: Global cloud cover and liquid water path from ISCCP C2 data. Int. J. Climatol., 13, 581–605.

    Article  Google Scholar 

  • Evans, 1993: Two-dimensional radiative transfer in cloudy atmosphere: The spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111–3124.

    Article  Google Scholar 

  • Faure, T., H. Isaka, and B. Guillemet, 2001: Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds: Feasibility study. Remote Sens. Environ., 77, 123–138.

    Article  Google Scholar 

  • Faure, T., H. Isaka, and B. Guillemet, 2002: Neural network retrieval of cloud parameters from high-resolution multispectral radiometric data: A feasibility study. Remote Sens. Environ., 80, 285–296.

    Article  Google Scholar 

  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465–497.

    Article  Google Scholar 

  • Hayasaka, T., M. Kuji, and M. Tanaka, 1994: Air truth validation of cloud albedo estimated from NOAA advanced very high resolution radiometer data. J. Geophys. Res., 99, 18 685–18 693.

    Article  Google Scholar 

  • Iwabuchi, H., 2000: Effects of cloud horizontal inhomogeneity on optical remote sensing of cloud parameters. Doctor thesis, Tohoku University, Sendai, Japan, 104 pp.

    Google Scholar 

  • Iwabuchi, H., and T. Hayasaka, 2002: Effects of cloud horizontal inhomogeneity on the optical thickness retrieved from moderate-resolution satellite data. J. Atmos. Sci., 59, 2227–2242.

    Article  Google Scholar 

  • Iwabuchi, H. and T. Hayasaka, 2003: A multi-spectral non-local method for retrieval of boundary layer cloud properties from optical remote sensing data. Remote Sens. Environ., 88, 294–308.

    Article  Google Scholar 

  • Iwabuchi, H., 2006: Efficient Monte Carlo methods for radiative transfer modeling. J. Atmos. Sci., 63, 2324–2339.

    Article  Google Scholar 

  • Kikuchi, K., Y. Asuma, T. Taniguchi, M. Kanno, M. Tanaka, T. Hayasaka, T. Takeda, and Y. Fujiyoshi, 1993: Structure and reflectance of winter maritime stratocumulus clouds. J. Meteor. Soc. Japan, 71, 715–731.

    Google Scholar 

  • Loeb, N. G., and J. A. Coakley, Jr, 1998: Inference of marine stratus cloud optical depth from satellite measurements: Does 1D theory apply? J. Climate, 11, 215–233.

    Article  Google Scholar 

  • Loeb, N. G., T. Várnai, and D. M. Winker, 1998: Influence of subpixel-scale cloud-top structure on reflectances from overcast stratiform cloud layers. J. Atmos. Sci., 55, 2960–2973.

    Article  Google Scholar 

  • Marshak, A., A. Davis, W. J. Wiscombe, and R. F. Cahalan, 1995a: Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26 247–26 261.

    Article  Google Scholar 

  • Marshak, A., A. Davis, W. J. Wiscombe, and G. Titov, 1995b: The verisimilitude of the independent pixel approximation used in cloud remote sensing. Remote Sens. Environ., 52, 71–78.

    Article  Google Scholar 

  • Marshak, A., A. Davis, R. F. Cahalan, and W. J. Wiscombe, 1998: Nonlocal independent pixel approximation: Direct and inverse problem s. IEEE Trans. Geosc. and Remote Sens., 36, 192–205.

    Article  Google Scholar 

  • Marshak, A., A. B. Davis, W. J. Wiscombe, and R. F. Cahalan, 1999: Horizontal radiative fluxes in clouds and accuracy of the independent pixel approximation at absorbing wavelengths. Geophys. Res. Lett., 26, 1585–1588.

    Article  Google Scholar 

  • Marshak A., S. Platnick, T. Várnai, G. Wen, R. F. Cahalan, 2006: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.

    Google Scholar 

  • Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider, 1992: Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor., 31, 317–339.

    Article  Google Scholar 

  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 1878–1893.

    Article  Google Scholar 

  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52, 4043–4059.

    Article  Google Scholar 

  • Oreopoulos, L., and R. Davies, 1998a: Plane parallel albedo biases from satellite observations. Part I: Dependence on resolution and other factors. J. Climate, 11, 919–932.

    Article  Google Scholar 

  • Oreopoulos, L., and R. Davies, 1998b: Plane parallel albedo biases from satellite observations. Part II: Parameterizations for bias removal. J. Climate, 11, 933–944.

    Article  Google Scholar 

  • Oreopoulos, L., A. Marshak, R. F. Cahalan, and G. Wen, 2000: Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation functions. J. Geophys. Res., 105, 14 777–14 788.

    Article  Google Scholar 

  • Radke, L. F., J. A. Coakley, and M. D. King, 1989: Direct and remote sensing observations of the effects of ships on clouds. Science, 246, 1146–1149.

    Article  Google Scholar 

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.

    Article  Google Scholar 

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2–20.

    Article  Google Scholar 

  • Szczap, F., H. Isaka, M. Saute, B. Guillemet, and Y. Gour, 2000: Inhomogeneity effects of 1D and 2D bounded cascade model clouds on their effective radiative properties. Phys. Chem. Earth, 25, 83–89.

    Google Scholar 

  • Titov, G. A., 1998: Radiative horizontal transport and absorption in stratocumulus clouds. J. Atmos. Soc., 55, 2549–2560.

    Article  Google Scholar 

  • Tselioudis, G., W. B. Rossow, and D. Rind, 1992: Global patterns of cloud optical thickness variation with temperature. J. Climate, 5, 1484–1495.

    Article  Google Scholar 

  • Vali, G., R. D. Kelly, J. French, S. Haimov, and D. Leon, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55, 3540–3564.

    Article  Google Scholar 

  • Várnai, T., and R. Davies, 1999: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56, 4206–4224.

    Article  Google Scholar 

  • Várnai T., A. Marshak, 2003: A method for analyzing how various parts of clouds influence each other’s brightness. J. Geophys. Res., 108(D22), 4706, doi:10.1029/2003JD003561.

    Article  Google Scholar 

  • Zinner T., B. Mayer, M. Schröder, 2006: Determination of three-dimensional cloud structures from high-resolution radiance data. J. Geophys. Res., 111, D08204, doi:10.1029/2005JD006062.

    Google Scholar 

  • Zuidema, P., and K. F. Evans, 1998: On the validity of the independent pixel approximation for boundary layer cloud observed during ASTEX. J. Geophys. Res., 103, 6059–6074.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Iwabuchi, H. (2007). Retrieval of cloud optical thickness and effective radius using multispectral remote sensing and accounting for 3D effects. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 2. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68435-0_3

Download citation

Publish with us

Policies and ethics