Skip to main content

On the remote sensing and radiative properties of cirrus

  • Chapter

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Imagine an evening sky just before sunset as one gazes into the dark blue sky whilst lying in a country field surrounded by bird song, there often appears high in the sky wispy thin fibrous clouds. These innocuous-looking clouds are called cirrus. A non-specialist might be forgiven for thinking that such insubstantial-looking clouds are unimportant to the climate system. In fact, nothing could be further from the truth, as this chapter will demonstrate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asano, S., and M. Sato, 1980: Light scattering by randomly oriented spheroidal particles, Appl. Opt., 19, 962–974.

    Google Scholar 

  • Baran, A. J., P. D. Watts, and P. N. Francis, 1999: Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements, J. Geophys. Res., 104, 31673–31683.

    Article  Google Scholar 

  • Baran, A. J., P. Yang, and S. Havemann, 2001a: Calculation of the single scattering properties of randomly oriented hexagonal ice columns: a comparison of the Tmatrix and the finite-difference time-domain methods, Appl. Opt. 40, 4376–4386.

    Google Scholar 

  • Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriaux-Boucher, 2001b: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus, Q. J. R. Meteorol. Soc., 127, 2395–21416.

    Google Scholar 

  • Baran, A. J., S. Havemann, P. N. Francis, and P. D. Watts, 2003: A consistent set of single scattering properties for cirrus cloud: A test using radiance measurements from a dual-viewing multi-wavelength satellite-based instrument, J. Quant. Spectr. Rad. Transfer, 79–80, 549–567.

    Article  Google Scholar 

  • Baran, A. J., 2003a: On the scattering and absorption properties of cirrus cloud, J. Quant. Spectr. Rad. Transfer, 89, 17–36.

    Article  Google Scholar 

  • Baran, A. J., 2003b: Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders, Appl. Opt., 42, 2811–2818.

    Google Scholar 

  • Baran, A. J., and S. Havemann, 2004: The dependence of retrieved ice-crystal effective dimension on assumed ice crystal geometry and size-distribution function at solar wavelengths, Q. J. R. Meteorol. Soc., 130, 2153–2167.

    Article  Google Scholar 

  • Baran, A. J., and P. N. Francis, 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements, Q. J. R. Meteorol. Soc., 130, 763–778.

    Article  Google Scholar 

  • Baran, A. J., 2005: The dependence of cirrus infrared radiative properties on ice crystal geometry and shape of the size-distribution function, Q. J. R. Meteorol. Soc., 131, 1129–1142.

    Article  Google Scholar 

  • Baran, A. J., V. N. Shcherbakov, B. A. Baker, J. F. Gayet and R. P. Lawson, 2005: On the scattering phase-function of non-symmetric ice crystals, Q. J. R. Meteorol. Soc., 131, 2609–2616.

    Article  Google Scholar 

  • Baran A. J., and L. C. Labonnote, 2006. On the reflection and polarization properties of ice cloud, J. Quant. Spectrosc. Radiat. Transfer, 100, 41–54.

    Article  Google Scholar 

  • Baran, A. J., 2006: The suitability of assuming ice aggregates as a predictor of ice water content, OBR Tech. Note. No. 56, Met Office, Exeter.

    Google Scholar 

  • Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, and S. C. Tsay, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 1. Data and models, J. Geophys. Res. 105, 11767–11780.

    Article  Google Scholar 

  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part I. Microphysical data and models, J. App. Met., 44, 1885–1895.

    Article  Google Scholar 

  • Borovoi, A., I. Grishin, E. Naats, and U. Oppel, 2000: Backscattering peak of hexagonal ice columns and plates, Opt. Lett., 25, 1388–1392.

    Google Scholar 

  • Borovoi, A. G., and I. A. Grishin, 2003: Scattering matrices for large ice crystal particles, JOSA, A 20, 2071–2080.

    Google Scholar 

  • Borovoi, A., A. Cohen, N. Kustova, and U. Oppel, 2005: Light scattering by large ice crystal particles, Proc. 8th Conference on Electromagnetic and Light Scatter ing by Nonspherical Particles: Theory, Measurements and Applications, Salobreña, Granada, Spain, May 16th–20th, 44–47.

    Google Scholar 

  • Bréon, F.-M., and B. Dubrulle, 2004: Horizontally oriented plates in clouds, J. Atmos. Sci., 61, 2888–2898.

    Article  Google Scholar 

  • Bryant, F. D., and P. Latimer, 1969: Optical efficiencies of large particles of arbitrary shape and orientation, J. Colloid Interface Sci., 30, 291–304.

    Article  Google Scholar 

  • Buriez, J.-C., C. Vanbauce, F. Parol, P. Gouloub, M. Herman, B. Bonnel, Y. Fouquart, P. Couvert, and G. Séze, 1997: Cloud detection and derivation of cloud properties from POLDER, Int. J. Remote. Sensing, 18, 2785–2813.

    Article  Google Scholar 

  • Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: Theory, Appl. Opt., 21, 3569–3580.

    Google Scholar 

  • Chepfer, H., G. Brogniez, P. Goloub, F. M. Bréon, and P. H. Flamant, 1999: Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1, J. Quant. Spectr. Rad. Transfer, 63, 521–543.

    Article  Google Scholar 

  • Clarke, A. J. M., E. Hesse, Z. Ulanowski, and P. H. Kaye, 2006: A 3D implementation of ray tracing combined with diffraction on facets: Verification and a potential application, J. Quant. Spectrosc. Radiat. Transfer, 100, 103–114.

    Article  Google Scholar 

  • Connolly, P. J., C. P. R. Saunders, M. W. Gallagher, K. N. Bower, M. J. Flynn, T. W. Choularton, J. Whiteway, and R. P. Lawson, 2004: Aircraft observations of the influence of electric fields on the aggregation of ice crystals, Q. J. R. Meteorol. Soc., 128, 1-1–9.

    Google Scholar 

  • Donner, L., C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Strom, and K. N. Liou, 1997: Large-scale ice clouds in the GFDL SKYHI general circulation model, J. Geophys. Res., 102, 460–470.

    Article  Google Scholar 

  • Doutriaux-Boucher, M., J.-C. Buriez, G. Brogniez, L.-C. Labonnote, and A. J. Baran, 2000: Sensitivity of retrieved POLDER directional cloud optical thickness to various ice particle models, Geophys. Res. Lett., 27, 109–112.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. 1. Choosing a configuration for a large-scale model, Q. J. R. Meteorol. Soc. 122, 689–719.

    Article  Google Scholar 

  • Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007: A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM, Atmos. Res., 83, 19–34.

    Article  Google Scholar 

  • Field, P. R., A. J. Baran, P. H. Kaye, E. Hirst, and R. Greenway, 2003: A test of cirrus ice crystal scattering phase functions, Geophys. Res. Lett., 30, 1752, doi:10.1029/2003GL017482.

    Article  Google Scholar 

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distribution functions for mid-latitude stratiform cloud, Q. J. R. Meteorol. Soc., 131, 1997–2017.

    Article  Google Scholar 

  • Foot, J., 1988: Some observations of the optical properties of clouds. II: Cirrus, Q. J. R. Meteorol. Soc., 114, 141–164.

    Google Scholar 

  • Francis, P. N., A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, and Z. Sun, 1994: An observational and theoretical study of the radiative properties of cirrus: Some results from ICE’89, Q. J. R. Meteorol. Soc., 120, 809–848.

    Article  Google Scholar 

  • Francis, P. N., J. S. Foot, and A. J. Baran, 1999: Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape, J. Geophys. Res., 104, 31685–31695.

    Article  Google Scholar 

  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models, J. Climate, 9, 2058–2082.

    Article  Google Scholar 

  • Fu, Q., W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths, J. Atmos. Sci., 56, 2937–2947.

    Article  Google Scholar 

  • Gallagher, M. W., J. Whiteway, M. J. Flynn, P. J. Connolly, D. Figueros-Nieto, T. W. Choularton, K. N. Bower, C. Cook, R. Busen, and J. Hacker, 2004: An overview of the microphysical structure of cirrus clouds observed during emerald-1, Q. J. R. Meteorol. Soc., 131, 1143–1169.

    Article  Google Scholar 

  • Garrett, T. J., H. Gerber, D. G. Baumgardner, C. H. Twohy, and E. M. Weinstock, 2003: Small, highly reflective ice crystals in low-latitude cirrus, Geophys. Res. Lett., 30, Art. No. 2132.

    Google Scholar 

  • Garrett, T. J., B. C. Navarro, C. H. Twohy, E. J. Jensen, D. G. Baumgardner, P. T. Bui, H. Gerber, R. L. Herman, A. J. Heymsfield, P. Lawson, P. Minnis, L. Nguyen, M. Poellot, S. K. Pope, F. P. J. Valero, and E. M. Weinstock, 2005: Evolution of a Florida anvil, J. Atmos. Sci., 62, 2352–2372.

    Article  Google Scholar 

  • Gerber H., Y. Takano, T. J. Garrett, P. V. Hobbs, 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds, J. Atmos. Sci., 57, 3021–3034.

    Article  Google Scholar 

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis, J. Clim., 5, 1281–1304.

    Article  Google Scholar 

  • Havemann, S., A. J. Baran, and J. M. Edwards, 2003: Implementation of the T-matrix method on a massively parallel machine: A comparison of hexagonal ice cylinder single scattering properties using the T-matrix and improved geometric optics methods, J. Quant. Spectr. Rad. Transfer, 79–80, 707–720.

    Article  Google Scholar 

  • Henyey, L., and J. Greenstein, 1941: Diffuse radiation in the galaxy, Astrophys. Journal, 93, 70–83.

    Article  Google Scholar 

  • Hesse, E., and Z. Ulanowski, 2003: Scattering from long prisms computed using ray tracing combined with diffraction on facets, J. Quant. Spectr. Rad. Trans., 79–80, 721–732.

    Article  Google Scholar 

  • Hesse, E., Z. Ulanowski, and S. Havemann, 2003: Scattering from long prisms: a comparison between ray tracing combined with diffraction on facets and SVM, In Proc 7th Int. Conf. on Electromagnetic and Light Scattering bu Bon-spherical particles, Bremen, 119–122.

    Google Scholar 

  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parametrization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water-content, J. Atmos. Sci., 41, 846–855.

    Article  Google Scholar 

  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns, J. Atmos. Sci., 59, 3457–3491.

    Article  Google Scholar 

  • Heymsfield, A. J., and L. M. Miloshevich, 2003. Parametrizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles, J. Atmos. Sci., 60, 936–956.

    Article  Google Scholar 

  • Hong, G., G. Heygster, and C. A. M. Rodriguez, 2006: Effect of cirrus clouds on the diurnal cycle of tropical deep convective clouds, J. Geophys. Res., 111, D06209, doi:10.1029/2005JD006208.

    Article  Google Scholar 

  • IPCC, 2001: Climate change 2001: The scientific basis. Third assessment report of the Intergovernmental Panel on Climate Change, Eds. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell and C. A. Johnson, Cambridge University Press, Cambridge and New York.

    Google Scholar 

  • Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds, Atmos. Res., 59, 89–113.

    Article  Google Scholar 

  • Kahnert, F. M., J. J. Stamnes, and K. Stamnes, 2001: Application of the extended boundary condition method to particles with sharp edges: a comparison of two surface integration approaches, Appl. Opt., 40, 3101–3109.

    Google Scholar 

  • Kahnert, F. M., J. J. Stamnes, and K. Stamnes, 2002a: Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes, J. Opt. Soc. Am., A 19, 521–531.

    Google Scholar 

  • Kahnert, F. M., J. J. Stamnes, and K. Stamnes, 2002b: Using simple particle shapes to model the stokes scattering matrix of ensembles of wavelength-sized particles with particles with complex shapes: possibilities and limitations, J. Quant. Spectr. Rad. Transfer, 74, 167–182.

    Article  Google Scholar 

  • Kahnert, F. M., 2003: Numerical methods in electromagnetic scattering theory, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 775–824.

    Article  Google Scholar 

  • Kite, A. J., 1987: The albedo of broken cloud fields, Q. J. R. Meteorol. Soc., 113, 517–531.

    Article  Google Scholar 

  • Kokhanovsky, A., and A. Macke, 1997: The dependence of the radiative characteristicss of optically thick media on the shape of particles, J. Quant. Spectr. Rad. Transfer, 63, 393–407.

    Article  Google Scholar 

  • Kokhanovsky, A., 2004: Optical properties of terrestrial clouds, Earth Sci. Revs., 64, 189–241.

    Article  Google Scholar 

  • Kokhanovsky, A., 2005a: Phase matrix of ice crystals in noctilucent clouds, Proc. SPIE, 5829, 44–52.

    Article  Google Scholar 

  • Kokhanovsky, A., 2005b: Microphysical and optical properties of noctilucent clouds, Earth Sci. Rev., 71, 127–146.

    Article  Google Scholar 

  • Kokhanovsky, A., 2006: Modeling of light depolarization by cubic and hexagonal particles in noctilucent clouds, Atmos. Res., 79, 175–181.

    Article  Google Scholar 

  • Korolev, A., G. A. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds, Q. J. R. Meteorol. Soc., 126, 2873–2902.

    Article  Google Scholar 

  • Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell, 2000: The impact of a new scheme for the optical properties of ice crystals on the climate of two GCMs, J. Geophys. Res., 105, 10063–10079.

    Article  Google Scholar 

  • Labonnote, L.-C., G. Brogniez, J. C. Buriez, M. Doutriaux-Boucher, J. F. Gayet, and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements, J. Geophys. Res., 106, 12139–12153.

    Article  Google Scholar 

  • Lawson, P., B. A. Baker, C. G. Schmitt, T. L. Jensen, and K. N. Liou, 2001: An overview of microphysical properties of artic clouds observed in May and July 1998 during fire ace, J. Geophys. Res., 106, 14989–15014.

    Article  Google Scholar 

  • Lawson, P., B. A. Baker, and B. L. Pilson, 2003: In situ measurements of microphysical properties of mid-latitude and anvil cirrus and validation of satellite retrievals, In Proc 30th International Symposium on Remote Sensing of Environment. Honolulu, Hawaii.

    Google Scholar 

  • Lee, Y. K., P. Yang, M. I. Mishchenko, B. A. Baum, Y. X. Hu, H. L. Huang, W. J. Wiscombe, and A. J. Baran, 2003: Use of circular cylinders as surrogates for hexagonal pristine ice crystals in scattering calculations at infrared wavelengths, Appl. Opt., 42, 2653–2664.

    Google Scholar 

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate process: A global perspective, Mon. Weather Rev., 114, 1167–1199.

    Article  Google Scholar 

  • Liou, K. N., and Y. Takano, 1994: Light scattering by nonspherical particles: Remote sensing and climatic implications, Atmos. Res., 31, 271–298.

    Article  Google Scholar 

  • Liou, K. N., Y. Takano, and P. Yang, 2000: Light scattering and radiative transfer by ice crystal clouds: Applications to climate research, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, Eds. M. I. Mishchenko, J.W. Hovenier, and L. D. Travis, Academic Press, San Diego, CA, 417–449.

    Google Scholar 

  • Lohmann, U., and E. Roeckner, 1995: Influence of cirrus radiative forcing on climate and climate sensitivity in a general-circulation model, J. Geophys. Res., 100, 16305–16323.

    Article  Google Scholar 

  • Lynch, D., K. Sassen, D. Star and G. L. Stephens (Eds.), 2002: Cirrus, Oxford University Press, Oxford.

    Google Scholar 

  • Macke, A., 1993: Scattering of light by polyhedral ice crystals, Appl. Opt., 32, 2780–2788.

    Google Scholar 

  • Macke, A. J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystal, J. Atmos. Sci., 53, 2813–2825.

    Article  Google Scholar 

  • Mackowski, D. W., 2002: Discrete dipole moment method for calculation of the T matrix for nonspherical particles, J. Opt. Soc. Am., A 19, 881–893.

    Google Scholar 

  • Mano, Y., 2000: Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method, Appl. Opt., 39, 5541–5546.

    Google Scholar 

  • McFarlane, S. A., R. T. Marchand, and T. P. Ackerman, 2005: Retrieval of cloud phase and crystal habit from multiangle imaging spectroradiometer (MISR) and moderate resolution imaging spectroradiometer (MODIS) data, J. Geophys. Res., 110, D14201, doi:10.1029/2004JD004831.

    Article  Google Scholar 

  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the central equatorial pacific experiment, J. Atmos. Sci., 53, 2401–2423.

    Article  Google Scholar 

  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds, J. Atmos. Sci., 55, 2039–2052.

    Article  Google Scholar 

  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate the mean-scattering properties and multispecrtral radiance, CEPEX April 4 1993 case study, J. Geophy. Res., 104, 31763–31779.

    Article  Google Scholar 

  • McFarquhar, G. M., P. Yang, A. Macke and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions, J. Atmos. Sci., 59, 2458–2478.

    Article  Google Scholar 

  • Mishchenko, M. I., and A. Macke, 1997: Asymmetry parameters of the phase function for isolated and densely packed spherical particles with multiple internal inclusions in the geometric optics limit, J. Quant. Spectr. Rad. Transfer, 57, 767–794.

    Article  Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetry scatterers, J. Quant. Spectrosc. Radiat. Transfer, 60, 309–324.

    Article  Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mitchell, J. F. B., C. A. Senior, and W. J. Ingram, 1989: CO2 and climate: A missing feedback? Nature, 341, 132–134.

    Article  Google Scholar 

  • Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds, II, Dependence of absorption and extinction on ice crystal morphology, J. Atmos. Sci., 51, 817–832.

    Article  Google Scholar 

  • Mitchell, D. L., Y. Liu, and A. Macke, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties, J. Atmos. Sci., 53, 2967–2988.

    Article  Google Scholar 

  • Mitchell, D. L., W. P. Arnott, C. Schmitt, A. J. Baran, S. Havemann, and Q. Fu, 2001: Photon tunneling contributions to extinction for laboratory grown hexagonal columns, J. Quant. Spectr. Rad. Transfer, 70, 761–776.

    Article  Google Scholar 

  • Mitchell, D. L., 2002: Effective diameter in radiation transfer, J. Atmos. Sci., 59, 2330–2346.

    Article  Google Scholar 

  • Mitchell, D. L., A. J. Baran, W. P. Arnott, and C. Schmitt, 2006: Testing and comparing the Modified Anomalous Diffraction Approximation, J. Atmos. Sci., 63, 2948–2962.

    Article  Google Scholar 

  • Muinonen, K., 1989: Scattering of light by crystals: a modified Kirchhoff approximation, Appl. Opt., 28, 3044–3050.

    Google Scholar 

  • Noel, V., and H. Chepfer, 2004: Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements, J. Atmos. Sci., 61, 2073–2081.

    Article  Google Scholar 

  • Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by small quasi-spherical ice crystals, J. Atmos. Sci., 61, 2229–2248.

    Article  Google Scholar 

  • Ou, S. C., K. N. Liou, Y. Takano, and R. L. Slonaker, 2005: Remote sensing of cirrus cloud particle size and optical depth using polarimetric sensor measurements, J. Atmos. Sci., 62, 4371–4383.

    Article  Google Scholar 

  • Ringer, M. A., J. M. Edwards, and A. Slingo, 2003: Simulation of satellite channel radiances in the Met Office Unified Model, Q. J. R. Meterol. Soc., 129, 1169–1190.

    Article  Google Scholar 

  • Rolland, P., K. N. Liou, M. D. King, S. C. Tsay, and G. M. McFarquhar, 2000: Remote sensing of optical and microphysical properties of cirrus clouds using MODIS channels: methodology and sensitivity to assumptions, J. Geophys. Res., 105, 11,721–11,738.

    Article  Google Scholar 

  • Rother, T., K. Schmidt, and S. Havemann, 2001: Light scattering on hexagonal ice columns, J. Opt. Soc. Am, A 18, 2512–2517.

    Google Scholar 

  • Saunders, C. P. R., and N. M. A. Wahab, 1975: The influence of electric fields on the aggregation of ice crystals, J. Meteorol. Soc. Japan, 53, 121–126.

    Google Scholar 

  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46, 1419–1427.

    Article  Google Scholar 

  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502–2509.

    Google Scholar 

  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: sensitivity of simple systems, J. Atmos. Sci., 38, 235–247.

    Article  Google Scholar 

  • Stephens, G. L., S.-C. Tsay, P. W. Stackhous, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback, J. Atmos. Sci., 47, 1742–1753.

    Article  Google Scholar 

  • Sun, W. B., Q. Fu, and Z. Chen, 1999: Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions, Appl. Opt., 38, 3141–3151.

    Google Scholar 

  • Sun, W. B., and Q. Fu, 2001: Anomalous diffraction theory for randomly oriented nonspherical particles: A comparison between original and simplified solutions, J. Quant. Spectr. Rad. Transfer, 70, 737–747.

    Article  Google Scholar 

  • Sun, W. B., T. Nousiainen, K. Muinonen, Q. Fu, N. G. Loeb, and G. Videen, 2003: Light scattering by Gaussian particles: a solution with finite-difference time-domain technique, J. Quant. Spectr. Rad. Transfer, 79, 1083–1090.

    Article  Google Scholar 

  • Sun, W. B., N. G. Loeb, G. Videen, and Q. Fu, 2004: Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm, Appl. Opt., 43, 1957–1964.

    Article  Google Scholar 

  • Takano, Y., and K. N. Liou, 1989a: Solar radiative transfer in cirrus clouds. Part I. Single-scattering and optical properties of hexagonal ice crystals, J. Atmos. Sci., 46, 3–19.

    Article  Google Scholar 

  • Takano, Y., and K. N. Liou, 1989b: Radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium, J. Atmos. Sci., 46, 20–36.

    Article  Google Scholar 

  • Ulanowski, Z., E. Hesse, P. H. Kaye and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals, J. Quant. Spectr. Rad. Transfer, 100, 382–392.

    Article  Google Scholar 

  • van de Hulst, H. C., 1957: Light Scattering by Small Particles, Wiley, New York.

    Google Scholar 

  • Volkovitskiy, O. A., L. N. Pavlova, and A G. Petrushin, 1980: Scattering of light by ice crystals, Atmos. Ocean. Phys., 16, 90–102.

    Google Scholar 

  • Wahab, N. M. A., 1974: Ice crystal interactions in electric fields, Ph.D. thesis, UMIST.

    Google Scholar 

  • Warren, S. G. 1984: Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 1206–1224.

    Google Scholar 

  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals, Appl. Opt., 18, 2663–2671.

    Google Scholar 

  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Theory of growth by differential sedimentation, with application to snowflake formation, Phys. Rev. E, 70, Art. No. 021403.

    Google Scholar 

  • Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. I. Strabala, 1994: Four years of global cirrus statistics using HIRS, J. Climate, 7, 1972–1986.

    Article  Google Scholar 

  • Wyser, K., and P. Yang, 1998: Average ice crystal size and bulk short-wave single scattering properties of cirrus clouds, Atmos. Res., 49, 315–335.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics methods, J. Opt. Soc. Amer. A, 12, 162–176.

    Google Scholar 

  • Yang, P., and K. N. Liou, 1996: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals, Appl. Opt., 35, 6568–6584.

    Article  Google Scholar 

  • Yang, P., K. N. Liou, and W. P. Arnott, 1997: Extinction efficiency and single scattering albedo for laboratory and natural cirrus clouds, J. Geophys. Res., 102, 21825–21835.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere, Contr. Atmos. Phys., 71, 223–248.

    Google Scholar 

  • Yang, P., K. N. Liou, M. I. Mishchenko, and B.-C. Gao, 2000: An efficient finite-difference time domain scheme for light scattering by dielectric particles: Application to aerosols, Appl. Opt., 39, 3727–3737.

    Article  Google Scholar 

  • Yang, P., B.-C. Gao, B. A. Baum, W. Wiscombe, Y. Hu, S. L. Nasiri, A. Heymsfield, G. McFarquhar, and L. Miloshevich, 2001: Sensitivity of cirrus bidirectional re-flectance in MODIS bands to vertical inhomogeneity of ice crystal habits and size distributions, J. Geophys. Res., 106, 17267–17291.

    Article  Google Scholar 

  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-Chee Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1159–1180.

    Article  Google Scholar 

  • Yang, P., G. W. Kattawar, and W. J. Wiscombe, 2004: Effect of particle asphericity on single scattering parameters: Comparison between Platonic solids and spheres, Appl. Opt., 43, 4427–4435.

    Article  Google Scholar 

  • Zhang, Y., A. Macke, and F. Albers, 1999: Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing, Atmos. Res., 52, 59–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Baran, A.J. (2007). On the remote sensing and radiative properties of cirrus. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 2. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68435-0_2

Download citation

Publish with us

Policies and ethics