Skip to main content

Resolving the Dryland Decomposition Conundrum: Some New Perspectives on Potential Drivers

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 70))

Decomposition of organic matter is a crucial component of biogeochemical cycles that strongly controls nutrient availability, productivity, and community composition. The factors controlling decomposition of litter in arid and semi-arid systems remain poorly understood, with an unresolved disconnect between measured and modeled decay rates. In contrast, decay rates in mesic systems are generally quite successfully predicted by models driven by climatic variables. Here, we explore the reasons for this disconnect by reviewing literature on the biotic and abiotic controls over dryland decomposition. Recent research on decomposition in drylands suggests that several key drivers of dryland decomposition have been historically overlooked and not included in models. In particular, UV photodegradation and soil transport processes, both a function of vegetation structure, may strongly influence dryland decomposition dynamics. We propose an expanded framework for studying dryland decay that explicitly addresses vegetation structure and its influence on decomposition. Spatial heterogeneity of vegetation in dryland systems necessitates considering how the spatial and temporal context of vegetation influences soil transport patterns and UV photodegradation, both of which may in turn affect abiotic and biotic decomposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R (1997a) Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Aerts R (1997b) Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposibility Question mark. Oikos 80:603–606

    Article  Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724

    Article  Google Scholar 

  • Arriaga L, Maya Y (2007) Spatial variability in decomposition rates in a desert scrub of northwestern Mexico. Plant Ecol 189:213–225

    Article  Google Scholar 

  • Austin AT, Vitousek PM (2000) Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai'i. J Ecol 88:129–138

    Article  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  PubMed  CAS  Google Scholar 

  • Binkley D (1984) Does forest removal increase rates of decomposition and nitrogen release Question mark. Forest Ecol Manag 8:229–233

    Article  Google Scholar 

  • Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Glob Change Biol 13:2193–2205

    Article  Google Scholar 

  • Breshears DD, Rich PM, Barnes FJ, Campbell K (1997) Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol Appl 7:1201–1215

    Article  Google Scholar 

  • Caldwell MM, Flint SD (1997) Uses of biological spectral weighting functions and the need of scaling for the ozone reduction problem. Plant Ecol 128:67–76

    Article  Google Scholar 

  • Caldwell MM, Ballare CL, Bornman JF, Flint SD, Björn LO, Teramura AH, Kulandaivelu G, Tevini M (2003) Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climate change factors. Photochem Photobiol Sci 2:29–38

    Article  PubMed  CAS  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  Google Scholar 

  • Day TA, Zhang ET, Ruhland CT (2007) Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the Sonoran Desert. Plant Ecol 193:185–194

    Article  Google Scholar 

  • Duguay KJ, Klironomos JN (2000) Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi. Appl Soil Ecol 14:157–164

    Article  Google Scholar 

  • Edmonds RL (1979) Decomposition and nutrient release in Douglas-fir needle litter in relation to stand development. Can J Forest Res 9:132–140

    Article  CAS  Google Scholar 

  • Ekaya W, Kinyamario J (2001) Production and decomposition of plant litter in an arid rangeland of Kenya. Afr J Range Forage Sci 18:125–129

    Google Scholar 

  • Elkins NZ, Whitford WG (1982) The role of microarthropods and nematodes in decomposition in a semi-arid ecosystem. Oecologia 55:303–310

    Article  Google Scholar 

  • Field C, Behrenfeld M, Randerson J, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  • Fryrear DW (1985) Soil cover and wind erosion. Trans Am Soc Agric Eng 28:781–784

    Google Scholar 

  • Gallo ME, Sinsabaugh RL, Cabaniss SE (2006) The role of ultraviolet radiation in litter decomposition in arid ecosystems. Appl Soil Ecol 34:83–91

    Article  Google Scholar 

  • Gehrke C, Johanson U, Callaghan TV, Chadwick D, Robinson CH (1995) The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the sub-Arctic. Oikos 72:213–222

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–765

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hope GD, Prescott CE, Blevins LL (2003) Responses of available soil nitrogen and litter decomposition to openings of different sizes in dry interior Douglas-fir forests in British Columbia. Forest Ecol Manag 186:33–46

    Article  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268

    PubMed  Google Scholar 

  • Jacobson KM, Jacobson PJ (1998) Rainfall regulates decomposition of buried cellulose in the Namib Desert. J Arid Environ 38:571–583

    Article  Google Scholar 

  • Johnson KA, Whitford WG (1975) Foraging ecology and relative importance of subterranean termites in Chihuahuan desert ecosystems. Environ Entomol 4:66–70

    Google Scholar 

  • Kemp PR, Reynolds JF, Virginia RA, Whitford WG (2003) Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. J Arid Environ 53:21–39

    Article  Google Scholar 

  • Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming Question mark. Biogeochemistry 48:21–51

    Article  CAS  Google Scholar 

  • Mack MC, D'Antonio CM (2003) The effects of exotic grasses on litter decomposition in a Hawaiian woodland: The importance of indirect effects. Ecosystems 6:723–738

    Article  Google Scholar 

  • MacKay WP, Silva S, Lightfoot DC, Pagani MI, Whitford WG (1986) Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. Am Midl Nat 116:45–56

    Article  Google Scholar 

  • MacKay WP, Loring SJ, Zak JC, Silva SI, Fisher FM, Whitford WG (1994) Factors affecting loss in mass of creosotebush leaf litter on the soil surface in the northern Chihuahuan Desert. Southwestern Nat 39:78–82

    Article  Google Scholar 

  • Martínez-Yrízar A, Nuñez S, Burquez A (2007) Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico: Effects of habitat and litter quality. Acta Oecol 32:291–300

    Article  Google Scholar 

  • McCulley RL, Archer SR, Boutton TW, Hons FM, Zuberer DA (2004) Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 85:2804–2817

    Article  Google Scholar 

  • McCulley RL, Burke IC, Nelson JA, Lauenroth WK, Knapp AK, Kelly EF (2005) Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems 8:106–121

    Article  CAS  Google Scholar 

  • McHale PJ, Mitchell MJ, Bowles FP (1998) Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Can J Forest Res 28:1365–1372

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Moorhead DL, Callaghan T (1994) Effects of increasing ultraviolet-B radiation on decomposition and soil organic matter dynamics – a synthesis and modeling study. Biol Fertil Soils 18:19–26

    Article  CAS  Google Scholar 

  • Moorhead DL, Reynolds JF (1989) The contribution of abiotic processes to buried litter decomposition in the northern Chihuahuan Desert. Oecologia 79:133–135

    Article  Google Scholar 

  • Moretto AS, Distel RA (2003) Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Steipa gyneriodes. J Arid Environ 55:503–514

    Article  Google Scholar 

  • Moretto AS, Distel RA, Didone NG (2001) Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol 18:31–37

    Article  Google Scholar 

  • Mun HT, Whitford WG (1998) Changes in mass and chemistry of plant roots during long-term decomposition on a Chihuahuan Desert watershed. Biol Fertil Soils 26:16–22

    Article  CAS  Google Scholar 

  • Newsham KK, McLeod AR, Roberts JD, Greenslade PD, Emmett BA (1997) Direct effects of elevated UV-B radiation on the decomposition of Quercus robur leaf litter. Oikos 79:592–602

    Article  Google Scholar 

  • Okin GS, Gillette DA, Herrick JE (2006) Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J Arid Environ 65:253–275

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Osler G, Gauci C, Abbott LK (2004) Limited evidence for short-term succession of microarthropods during early phases of surface litter decomposition. Pedobiologia 48:37–49

    Article  Google Scholar 

  • Pancotto VA, Sala OE, Cabello M, Lopez NI, Robson TM, Ballare CL, Caldwell MM, Scopel AL (2003) Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Glob Change Biol 9:1465–1474

    Article  Google Scholar 

  • Pancotto VA, Sala OE, Robson TM, Caldwell MM, Scopel AL (2005) Direct and indirect effects of solar ultraviolet-B radiation on long-term decomposition. Glob Change Biol 11:1982–1989

    Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  PubMed  CAS  Google Scholar 

  • Pauli F (1964) Soil fertility problem in arid and semi-arid lands. Nature 204:1286–1288

    Article  Google Scholar 

  • Peters DPC, Bestelmeyer BT, Herrick JE, Fredrickson EL, Monger HC, Havstad KM (2006) Disentangling complex landscapes: New insights into arid and semiarid system dynamics. Bioscience 56:491–501

    Article  Google Scholar 

  • Pucheta E, Llanos M, Meglioli C, Gaviorno M, Ruiz M, Parera C (2006) Litter decomposition in a sandy Monte desert of western Argentina: Influences of vegetation patches and summer rainfall. Aust Ecol 31:808–816

    Article  Google Scholar 

  • Rozema J, Tosserams M, Nelissen HJM, van Heerwaarden L, Broekman RA, Flierman N (1997) Stratospheric ozone reduction and ecosystem processes: enhanced UV-B radiation affects chemical quality and decomposition of leaves of the dune grassland species Calamagrostis epigeios. Plant Ecol 128:285–294

    Article  Google Scholar 

  • Santos PF, Phillips J, Whitford WG (1981) The role of mites and nematodes in early stages of buried litter decomposition in a desert. Ecology 62:664–669

    Article  Google Scholar 

  • Schade GW, Hoffmann RM, Crutzen PJ (1999) CO emissions from degrading plant matter (I). Measurements. Tellus B 51:889–908

    Article  Google Scholar 

  • Schaefer D, Steinberger Y, Whitford WG (1985) The failure of nitrogen and lignin control of decomposition in a North American desert. Oecologia 65:382–386

    Article  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San Diego.

    Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187

    Article  Google Scholar 

  • Schuurman G (2005) Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86:1236–1249

    Article  Google Scholar 

  • Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004) Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141:191

    PubMed  Google Scholar 

  • Silva SI, MacKay WP, Whitford WG (1985) The relative contributions of termites and microarthropods to fluff grass litter disappearance in the Chihuahuan Desert. Oecologia 67:31–34

    Article  Google Scholar 

  • Smith JL, Halvorson JJ, Bolton JH (1994) Spatial relationships of soil microbial biomass and C and N mineralization in a semi-arid shrub-steppe ecosystem. Soil Biol Biochem 26:1151–1159

    Article  Google Scholar 

  • Strojan CL, Randall DC, Turner FB (1987) Relationship of leaf litter decomposition rates to rainfall in the Mojave Desert. Ecology 68:741–744

    Article  Google Scholar 

  • Sullivan NH, Bowden WB, McDowell WH (1999) Short-term disappearance of foliar litter in three species before and after a hurricane. Biotropica 31:382–393

    Article  Google Scholar 

  • Tadey M, Farji-Brener AG (2007) Indirect effects of exotic grazers: livestock decreases the nutrient content of refuse dumps of leaf-cutting ants through vegetation impoverishment. J Appl Ecol 44:1209–1218

    Article  Google Scholar 

  • Throop HL, Archer S (2007) Interrelationships among shrub encroachment, land management, and leaf litter decomposition in a semi-desert grassland. Ecol Appl 17:1809–1823

    Article  PubMed  Google Scholar 

  • Tiedemann AR, Klemmedson JO (2004) Responses of desert grassland vegetation to mesquite removal and regrowth. J Range Manage 57:455–465

    Article  Google Scholar 

  • Torres PA, Abril AB, Bucher EH (2005) Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biol Biochem 37:49–54

    Article  CAS  Google Scholar 

  • Toy TJ, Foster GR, Reynard KG (2002) Soil erosion: processes, prediction, measurement and control. Wiley, New York.

    Google Scholar 

  • Verhoef HA, Verspagen JMH, Zoomer HR (2000) Direct and indirect effects of ultraviolet-B radiation on soil biota, decomposition and nutrient fluxes in dune grassland soil systems. Biol Fertil Soils 31:366–371

    Article  CAS  Google Scholar 

  • Vossbrinck CR, Coleman DC, Woolley TA (1979) Abiotic and biotic factors in litter decomposition in a sermiarid grassland. Ecology 60:265–271

    Article  CAS  Google Scholar 

  • Weatherly HE, Zitzer SF, Coleman JS, Arnone JA (2003) In situ litter decomposition and litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO2 and interannual climate variability. Glob Change Biol 9:1223–1233

    Article  Google Scholar 

  • Wetterer JK, Himler AG, Yospin MM (2001) Foraging ecology of the desert leaf-cutting ant, Acromyrmex versicolor, in Arizona (Hymenoptera: Formicidae). Sociobiology 37:633–649

    Google Scholar 

  • Whitford W (2002) Ecology of desert systems. Academic Press, San Diego, CA.

    Google Scholar 

  • Whitford WG, Meentemeyer V, Seastedt TR, Cromack K, Crossley DA, Santos P, Todd RL, Waide JB (1981) Exceptions to the AET model – deserts and clear-cut forest. Ecology 62:275–277

    Article  Google Scholar 

  • Whitford WG, Steinberger Y, Ettershank G (1982) Contributions of subterranean termites to the “economy” of Chihuahuan Desert ecosystems. Oecologia 55:298–302

    Article  Google Scholar 

  • Whitford WG, Steinberger Y, MacKay W, Parker LW, Freckman D, Wallwork JA, Weems D (1986) Rainfall and decomposition in the Chihuahuan Desert. Oecologia 68:512–515

    Article  Google Scholar 

  • Yahdjian L, Sala O, Austin A (2006) Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian Steppe. Ecosystems 9:128–141

    Article  CAS  Google Scholar 

  • Zepp RG, Erickson DJI, Paul ND, Sulzberger B (2007) Interactive effects of solar UV radiation and climage change on biogeochemical cycling. Photochem Photobiol Sci 6:286–300

    Article  PubMed  CAS  Google Scholar 

  • Zhang QH, Zak JC (1995) Effects of gap size on litter decomposition and microbial activity in a subtropical forest. Ecology 76:2196–2204

    Article  Google Scholar 

  • Zou C, Barnes PW, Archer SR, McMurtry CR (2005) Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters. Oecologia 145:32–40

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. Throop .

Editor information

Ulrich Lüttge Wolfram Beyschlag Burkhard Büdel Dennis Francis

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Throop, H.L., Archer, S.R. (2009). Resolving the Dryland Decomposition Conundrum: Some New Perspectives on Potential Drivers. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany. Progress in Botany, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68421-3_8

Download citation

Publish with us

Policies and ethics