Skip to main content

Solute Uptake in Plants: A Flow/Force Interpretation

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 70))

Rates of uptake of silicic acid as a function of its concentration by the roots of various plants have been interpreted by their authors in the framework of a top-down approach based on the theoretical model of Michaelis and Menten. Although a hyperbola was fitted to the set of experimental points, this does not prove that all the simplifying assumptions underlying the Michaelis–Menten approach to transport were warranted. In consequence, the \(V_j^m-\) and \(K_j^m-\)values, which were inferred from these experiments, may not characterize the carrier molecules involved in the uptake process in the way that K m - and V m -values characterize classical enzymes (\(V_j^m = \) uptake rate when the carriers are saturated by the transported substrate, \(1/K_j^m =\) carrier affinity for this substrate). Since the experimental measurements have dealt only with solute uptake by entire biological systems (plant roots in the present case), here we adopt a “top-top” approach. The idea is to find logical parameters that characterize these entire systems rather than look for key molecular constituents (e.g. carriers). By using the fact that the equations relating flows to forces always have a linear approximation when the system is close to equilibrium, we introduce two parameters to describe the uptake features of plant roots in the system of coordinates \(\{{\rm ln}c_j^e,J_j(c^e_j)\}:{^\circ}c^e_j=\) the particular value of the concentration \(c_j^e\) of the substrate, S j , in the uptake medium for which the net flow, \(J_j(c^e_j)\), of S j exchange between medium and plant samples is zero and Lj = the overall conductance of the sample for S j -uptake (= slope of the linear part of the curve \(\{{\rm ln}c^e_j,J_j(c^e_j)\})\). We find that (1) the \({^\circ}c^e_j\) values are of the order of magnitude expected in the experimental conditions used and (2) the greater the ability of a plant to accumulate silicon, the greater the L j -value for the radial absorption of silicon by this plant. The flow/force approach to uptake is applicable to the absorption of any type of substrate by any type of plant. In the flow/force approach, \({^\circ}c^e_j\) must equal the concentration of S j in the growth solution of the plants prior to the experiments, which can be easily checked. It is possible to complement the interpretation of the uptake kinetics by using (1) a “symmetry criterion” to test whether uptake is active or passive and (2) an Arrhenius plot to check whether a modification of L j corresponds to a modification of the uptake mechanism that is quantitative (e.g. number of carriers) or qualitative (e.g. post-translational modification of carriers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews CS (1966) A kinetic study of phosphate absorption by excised roots of Stylosanthes humilis, Phaseolus lathyroides, Desmodium uncinatum, Medicago sativa and Hordeum vulgare. Aust J Agric Res 17:611–624

    Article  Google Scholar 

  • Dragišić Maksimović J, Bogdanović J, Maksimović V, Nikolic M (2007) Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J Plant Nutr Soil Sci 170:739–744

    Article  CAS  Google Scholar 

  • Epstein E (1953) Mechanism of ion absorption by roots. Nature 171:83–84

    Article  PubMed  CAS  Google Scholar 

  • Epstein E (1966) Dual pattern of ion absorption by plant cells and by plants. Nature 212:1324–1327

    Article  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  PubMed  CAS  Google Scholar 

  • Epstein E, Hagen CE (1952) A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol 27:457–474

    Article  PubMed  CAS  Google Scholar 

  • Falkner G, Falkner R, Schwab AJ (1989) Bioenergetic characterization of transient state phosphate uptake by the cyanobacterium Anacystis nidulans: theoretical and experimental basis for a sensory mechanism adapting to varying environmental phosphate levels. Arch Microbiol 152:353–361

    Article  CAS  Google Scholar 

  • Gaudinet A, Ripoll C, Thellier M, Kramer D (1984) Morphometric study of Lemna gibba in relation to the use of compartmental analysis and the flux-ratio equation in higher plant cells. Physiol Plant 60:493–501

    Article  CAS  Google Scholar 

  • Glass ADM (1976) Regulation of potassium absorption in barley roots: an allosteric model. Plant Physiol 58:33–37

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D (1996) Selectivity of ion channels: competitive catalysis versus independent electrodiffusion. J Exp Bot 47:1733–1736

    Article  CAS  Google Scholar 

  • Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Lassalles JP, Thellier M (1977) Discussion on the symmetry of macroscopic coefficients in the formulation of the cellular fluxes: possible application to a “symmetry criterion” for the study of active and passive transports. J Theor Biol 68:53–63

    Article  PubMed  CAS  Google Scholar 

  • Liang YC, Sun WC, Si J, Römheld V (2005) Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54:678–685

    Article  CAS  Google Scholar 

  • Lüttge U, Laties GG (1966) Dual mechanisms of ion absorption in relation to long distance transport in plants. Plant Physiol 41:1531–1539

    Article  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T Yano M (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  PubMed  CAS  Google Scholar 

  • Mitani M, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1265–1261

    Article  CAS  Google Scholar 

  • Neame KD, Richards TG (1972) Elementary kinetics of membrane carrier transport. Blackwell, Oxford

    Google Scholar 

  • Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495–503

    Article  PubMed  CAS  Google Scholar 

  • Rains DW, Epstein E (1967) Sodium absorption by barley roots: its mediation by mechanism 2 of alkali cation transport. Plant Physiol 42:319–323

    Article  PubMed  CAS  Google Scholar 

  • Rains DW, Epstein E, Zasoski RJ, Aslam M (2006) Active silicon uptake by wheat. Plant and Soil 280:223–228

    Article  CAS  Google Scholar 

  • Raven JA (2003) Cycling silicon – the role of accumulation in plants. New Phytol 158: 419–421

    Article  Google Scholar 

  • Ripoll C, Demarty M, Thellier M (1984) Formulation of transmembrane ionic fluxes. In: Cram J, Janacek K, Rybova R, Sigler K (eds) Membrane transport in plants. Publishing House of the Czechoslovak Academy of Sciences, Praha, pp. 21–26

    Google Scholar 

  • Sanders D (1990) Kinetic modeling of plant and fungal membrane transport systems. Annu Rev Plant Physiol Plant Mol Biol 41:77–107

    Article  CAS  Google Scholar 

  • Schachter H (1972) The use of the steady-state assumption to derive kinetic formulation for the transport of a solute across a membrane. In: Hokin LE (ed) Metabolic transport, vol VI. Academic Press, New York London, pp. 1–15.

    Google Scholar 

  • Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436

    Article  CAS  Google Scholar 

  • Thellier M (1969) Interprétation électrocinétique de l’absorption minérale chez les végétaux. Bull Soc Franç Physiol Veg 15:127–139

    CAS  Google Scholar 

  • Thellier M (1970) An “electrokinetic” interpretation of the functioning of biological systems and its application to the study of mineral salt absorption. Ann Bot 34:983–1009

    CAS  Google Scholar 

  • Thellier M (1971) Non-equilibrium thermodynamics and electrokinetic interpretation of biological systems. J Theor Biol 31:389–393

    Article  PubMed  CAS  Google Scholar 

  • Thellier M, Thoiron B, Thoiron A (1971) Electrokinetic formulation of overall kinetics of in vivo processes. Physiol Vég 9:65–82

    Google Scholar 

  • Thellier M, Ripoll C, Vincent JC, Mikulecky D (1993) Interpretation of the fluxes of substances exchanged by cellular systems with their external medium. In: Greppin H, Bonzon M, Degli Agosti R (eds) Some physico-chemical and mathematical tools for understanding of living systems. The University, Geneva, pp. 243–264

    Google Scholar 

  • Thellier M, Legent G, Amar P, Norris V, Ripoll C (2006) Steady-state kinetic behaviour of functioning-dependent structures. FEBS J 273:4287–4299

    Article  PubMed  CAS  Google Scholar 

  • Torii K, Laties GG (1966) Dual mechanism of ion uptake in relation to vacuolation in corn roots. Plant Physiol 41:863–870

    Article  PubMed  CAS  Google Scholar 

  • Ussing HH (1949) The distinction by mean of tracers between active transport and diffusion. Acta Physiol Scand 19:43–56

    Article  CAS  Google Scholar 

  • Ussing HH (1971) The interpretation of tracer fluxes in terms of active and passive transports. Physiol Vég 9:1–19

    Google Scholar 

  • Vincent JC, Thellier M (1983) Theoretical analysis of the significance of whether or not enzyme or transport systems in structured media follow Michaelis–Menten kinetics. Biophys J 41:23–28

    Article  PubMed  CAS  Google Scholar 

  • Vincent JC, Alexandre S, Thellier M (1988a) How a soluble enzyme can be forced to work as a transport system: description of an experimental design. Arch Biochem Biophys 261:405–408

    Article  CAS  Google Scholar 

  • Vincent JC, Alexandre S, Thellier M (1988b) How a soluble enzyme can be forced to work as a transport system: theoretical interpretation. Bioelectrochem Bioenerg 20:215–222

    Article  CAS  Google Scholar 

  • White PJ, Ridout M (1995) The K+ channel in the plasma membrane of rye roots has a multiple residency pore. J Membrane Biol 143:37–49

    Article  CAS  Google Scholar 

  • White PJ, Biskup B, Elzenga JTM, Homann U, Thiel G, Wissing F, Maathuis JM (1999) Advanced patch-clamp techniques and single-channel analysis. J Exp Bot 50:1037–1054

    Article  CAS  Google Scholar 

  • Wu QS, Wan XY, Su N, Cheng ZJ, Wang JK, Lei CL, Zhang X, Jiang L, Ma JF, Wan JM (2006) Genetic dissection of silicon uptake ability in rice (Oryza sativa L.). Plant Science 171:441–448

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thellier .

Editor information

Ulrich Lüttge Wolfram Beyschlag Burkhard Büdel Dennis Francis

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thellier, M., Ripoll, C., Norris, V., Nikolic, M., Römheld, V. (2009). Solute Uptake in Plants: A Flow/Force Interpretation. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany. Progress in Botany, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68421-3_3

Download citation

Publish with us

Policies and ethics