Skip to main content

Finite Elemente Methode (FEM) Prozess-Simulation in der Blechumformung

  • Chapter
  • First Online:
Book cover Blechumformung

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 16k Accesses

Zusammenfassung

Im Folgenden wird der Stand der Technik behandelt. Hierzu wird zunächst die geschichtliche Entwicklung dargestellt. Es schlieβt sich dann eine Betrachtung des heutigen Standes der FEM-Prozess-Simulation und der Entwicklungstendenzen an.

Letztlich erfolgt eine Darstellung alternativer numerischer Methoden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • [Argy57] Argyris J.H: Die Matrizentheorie der Statik, Ingenieurarchiv XXV, 174-194. (1957)

    Google Scholar 

  • [Barl03] Barlat F., et al., Plane stress yield function for aluminum alloy sheets – part 1 : theory, International Journal of Plasticity, 19, pp 1297-1319, (2003)

    Google Scholar 

  • [Bath96] K. J. Bathe, Finite Element Procedures. Englewood Cliffs, NJ: Prentice Hall, (1996)

    Google Scholar 

  • [Bath02] Bathe J. K., Finite-Elemente-Methoden, Springer Berlin, (2002)

    Google Scholar 

  • [Bely00] Belytschko T. et al., Nonlinear Finite Elements for Continua and Structures, Wiley Chichester, (2000)

    Google Scholar 

  • [Bely96] Belytschko T. et al., Meshless Method: An Overview and recent Developments, Comput. Methods Appl. Mech. Engrg. 139, 3-47, (1996)

    Google Scholar 

  • [Burk09] Eine Methodik zur virtuellen Beherrschung Thermo-Mechanischer Produktionsprozesse bei der Karosserieherstellung, Diss ETHZ 17545 Vdi Düsseldorf (2009)

    Google Scholar 

  • [Brae07] Braess D., Finite Elements, Theory, Fast Solvers and Applications in Solid Mechanics, Combridge, 3rd Edition, (2007)

    Google Scholar 

  • [Caza05] Cazacu O., et al., Orthotropic Yield Criterion for Hexagonal Closed Packed Metals, Int. J. Plasticity, 22, 1171-1194 (2005)

    Google Scholar 

  • [Chab89] Chaboche J. L., Constitutive equations for cyclic plasticity and cyclic viscoplasticity, International Journal of Plasticiy, 5, pp. 247-302 (1989)

    Google Scholar 

  • [Clou60] Clough R. W., The Finite Element in Plane Stress Analysis, J. Struct. Div. ASCE, Proc. 2nd Conf. Electronic Computation, p. 345, (1960)

    Google Scholar 

  • [Clou99] Clough R. W. And E. L. Wilson, Early finite element research at Berkeley, Fifth U.S. National Conference on Computational Mechanics, (1999)

    Google Scholar 

  • [Cour43] Courant R., Variational Method for the Solution of Problems of Equilibrium and Vibrations Bull. Amer. Soc., vol. 49, p. 1-43. (1943)

    Google Scholar 

  • [Dunn09] Dunn F. And Petrinic N., Introduction to Computational Plasticity, Oxford University Press, (2009)

    Google Scholar 

  • [Filz11] Filzek J., et al., Improved FEM Simulation of Sheet Metal Forming with Friction Modelling using Laboratory Tests, IDDRG, Dilbao, Spain, (2011)

    Google Scholar 

  • [Gal15] Galerkin B.G.: Series solutionsof some problems in elastic equilibrium of rods and plates. Vestn. Inzh. Tech., 19:897-908, 1915.

    Google Scholar 

  • [Häns98] Nichtisothermes Werkstoffmodell für die FE-Simulation von Blechumformprozessen mit metastabilen austenitischen CrNi-Stählen, Diss ETH-Zurich Nr. 12672, VDI Reihe 2 Nr. 491 (1998)

    Google Scholar 

  • [Hill48] Hill R., A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond A 193, pp 281- 297 (1948)

    Google Scholar 

  • [Hill79] Hill, R., 1979. Theoretical plasticity of textured aggregates. Math. Proc. Cambridge Philos. Soc. 85, 179– 191.

    Google Scholar 

  • [Hoch11] Hochholdinger, B. ; Hora, P. ; Grass, H. ; Lipp, A. : Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties ; Numisheet 2011 – Proceedings of the 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Froming Processes, p. 618–625, (2011).

    Google Scholar 

  • [Hora87] Hora P., Vu T.C., Wollrab P.M., Reissner J.: Simulation of the Forming Process for Irregulary Shaped Autobody Panels, Advanced Technology of Plasticity, edited by K. Lange, Springer Verlag, (1987)

    Google Scholar 

  • [Hora08] Hora P., Tong L.: Theoretical prediction of the influence of curvature and thickness on the enhanced modified maximum force criterion, In: Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2008), Interlaken, Switzerland, pp. 205-210, (2008).

    Google Scholar 

  • [Hora08] Hora P. Et al.Theoretical prediction of the influence of curvature and thickness on the enhanced modified maximum force criterion, In: Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2008), Interlaken, Switzerland, pp. 205-210, (2008).

    Google Scholar 

  • [Hora09] Hora P., Modeling of anisotropic hardening behaviour based on Barlat2000 yield locus description, FTF Zurich, 21-29, (2009).

    Google Scholar 

  • [Hora11] Hora P., Modellierung des Kaltverfestigungsverhaltens bei metallischen Werkstoffen, Conference Proceedings MEFORM 2011, edited by R. Kawalla, Freiberg, 2011.

    Google Scholar 

  • [Hora11] Hora P., On the Way from an Ideal Virtual Process to the Modelling of the Real Stochastic Behavior, FTF Zurich, 3-14, (2011).

    Google Scholar 

  • [Hort11] Hortig D., Experiences with Process Robustness of Sheet Metal Forming Processes, FTF Zurich, 19-24, (2011)

    Google Scholar 

  • [Hosf72] Hosford W. F., A generalized isotropic yield criterion, J. Appl. Mech. 39 607-609, (1972)

    Google Scholar 

  • [Keel65] Keeler S. P., Determination of forming limit in automotive stamping, Soc. of Automotive Engineering, Nr. 650 535, pp. 1-9, (1965)

    Google Scholar 

  • [Klei11] Optical 3D measuring Solutions in Optimization of Sheet Metal Development and Manufacturing, FTF-11 ETH, 91-96, (2011)

    Google Scholar 

  • [Koba89] Kobayashi S, S. Oh and Altan T., Metal Forming and the Finite Element Method, Oxford University Press (1989)

    Google Scholar 

  • [Lee73] Lee C. H., Kobayashi S, New Solution to Rigid-Plastic Deformation Problems using a Matrx Method, Trans. ASME, J. Eng. Ind. 95, 865 (1973)

    Google Scholar 

  • [Marc67] Marciniak Z. and Kuczynski K, Limit strains in the processes of stretch forming sheet metal, Int. J. Mech. Sci., 9, pp. 609-620, (1967)

    Google Scholar 

  • [Mais93] Maisch R.: Beschreibung von Kontakt und Reibung zwischen Werkstück und Werkzeug bei der FE-Simulation von Umformprozessen. Diss. ETH Nr. 10063, (1993).

    Google Scholar 

  • [Munj04] Munjiza A.: The Combined Finite-discrete Element Method, John Wiley &Sons LTD, (2004).

    Google Scholar 

  • [Numi93] Proceedings of 2nd International Conference of 3D-Sheet Metal Forming Processes – Verification of Simulation with Experiments, Edited by Makinouchi A., Nakamachi E., Onate E, Wagoner R.H., (1993).

    Google Scholar 

  • [Numi96] Proceedings of 3nd International Conference of 3D-Sheet Metal Forming Processes – Verification of Simulation with Experiments, Edited by Lee J.K., Kinzel G.L., Wagoner R.H. (1996).

    Google Scholar 

  • [Numi08] Volk W. : Benchmark 1 – Virtual Forming Limit Curves, The Numisheet Benchmark Study of the Numisheet 2008, Ed. By Hora P., Volk W. Roll K., Kessler, L. Hotz W., ISBN 978-3-909386-80-2 (2008).

    Google Scholar 

  • [Oden91] Oden T., Finite Elements: an Introduction. Handbook of Numerical Analysis II. Finite Element Methods (Part 1) Noth-Holland, pp 3-12 (1991)

    Google Scholar 

  • [Owen83] Owen D.R.J., Reduced Numerical Integration in Thermal Transient Finite Element Analysis, Computers and Structures, p.261-276, Vol. 17, No. 2,1983.

    Google Scholar 

  • [Rayl70] Lord Rayleigh (J.W. Strutt): On the theory of resonance: Trans Roy. Soc. (London) A161:77-118, 1870.

    Google Scholar 

  • [Ritz08] Ritz W., Über eine Methode zu Lösung gewisser Variationsprobleme der mathematischen Physik. J. Numer. Mathematik 135, 1569-1578 (1908)

    Google Scholar 

  • [Roll82] Roll K.: Einsatz numerischer Verfahren bei der Berechnung von Verfahren der Kaltmassivumformung. Berichte aus dem Institut für Umformtechnik IFU Stuttgart Nr. 66, Springer-Verlag Berlin-Heidelber N.Y., (1982).

    Google Scholar 

  • [Roll93] Roll K. and Tekkaya A. E., Numerische Verfahren der Prozesssimulation in der Umformtechnik, Umformtechnik Band 4. Ed. Lang K., Spring Verlag, (1993)

    Google Scholar 

  • [Saty02] Satya N. Atluri, Shen, S., The Meshless Local Petrove-Galerkin (MLPG) Method,Tech Science Press, (2002)

    Google Scholar 

  • [Sche51] Schellbach, K., Probleme der Variationsrechnung, Journal für die Reine und Angewandte Mathematik, 41, pp 293-363, (1851)

    Google Scholar 

  • [Stra73] Strang G. und Fix, G. J., An Analysis of the Finite Element Method, Prentice-Hall, Inc. Englewood Cliffs, (1973)

    Google Scholar 

  • [Teka00] Tekkaya A. E., Simulation of Metal Forming Processes, Formability of Metallic Materials, ed. Banabic D., pp 251-302 (2000).

    Google Scholar 

  • [Turn56] Turner M.J., Clouth R.M., Martin H.C. und Topp L.J.: Stiffness and deflection analysis of complex structures. J. aeron. Sci 23,805-823,854. (1956)

    Google Scholar 

  • [VDI91] FE simulation of 3-D Sheet Forming Processes in Automotive Industry, VDI Düsseldorf (1991)

    Google Scholar 

  • [Volk11] Volk W., Hora P., New Algorithm for a Robust User-independent evaluation of Beginning Instability for a Experimental FLC Determination, Int. J. Mater. Form 4, 339-346 (2011)

    Google Scholar 

  • [Wier05] Wierzbicki T., et al., Calibration and Evaluation of seven Fracture Models, Int. J. Mech. Sci., 47. 719-743 (2005)

    Google Scholar 

  • [Yosh02] Yoshida F. et al., Elastic-Plastic Behavior of Steel Sheets under In-Plane Cyclic Tension-Compression at Large Strain, Int. J. Plasticity, 18, 633-659, (2002)

    Google Scholar 

  • [Zien67] Zienkiewicz O. C., Methoden der Finiten Elemente in der Bau- und Kontinuumsmechanik (1967).

    Google Scholar 

  • [Zien71] Zienkiewicz O. C., The Finite Element Method in Engineering Science, McGraw-Hill-Verlag London (1971)

    Google Scholar 

  • [Zien69] Zienkiewicz O. C. et al., Elasto-Plastic Solution of Engineering Problems „Initial Stress”, Finite Element Approach, International Journal for Numerical Methods in Engineering, vol. 1, 75-100 (1969)

    Google Scholar 

  • [Zien73] Zienkiewicz O. C., Introductory lectures on the Finite Element Method, Springer Wien, (1973).

    Google Scholar 

  • [Zien00] Zienkiewicz O. C., Finite Element Method, Butterworth Heinemann Oxford, 5th ed. (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hora, P. (2015). Finite Elemente Methode (FEM) Prozess-Simulation in der Blechumformung. In: Siegert, K. (eds) Blechumformung. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68418-3_8

Download citation

Publish with us

Policies and ethics