Skip to main content

Feature Selection: Near Set Approach

  • Conference paper
Mining Complex Data (MCD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4944))

Included in the following conference series:

Abstract

The problem considered in this paper is how to select features that are useful in classifying perceptual objects that are qualitatively but not necessarily spatially near each other. The term qualitatively near is used here to mean closeness of descriptions or distinctive characteristics of objects. The solution to this problem is inspired by the work of Zdzisław Pawlak during the early 1980s on the classification of objects. In working toward a solution of the problem of the classification of perceptual objects, this article introduces a near set approach to feature selection. Consideration of the nearness of objects has recently led to the introduction of what are known as near sets, an optimist’s view of the approximation of sets of objects that are more or less near each other. Near set theory started with the introduction of collections of partitions (families of neighbourhoods) that provide a basis for a feature selection method based on the information content of the partitions of a set of sample objects. A byproduct of the proposed approach is a feature filtering method that eliminates features that are less useful in the classification of objects. This contribution of this article is the introduction of a near set approach to feature selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, M., Mitra, S., Banka, H.: Evolutionary rough feature selection in gene expression data. IEEE Transactions on Systems, Man, and Cybernetics–Part C: Applications and Reviews 37(4), 1–12 (2007)

    Article  Google Scholar 

  2. Borkowski, M., Peters, J.F.: Matching 2D image segments with genetic algorithms and approximation spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 63–101. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bradley, J.W., Webster, R.: Interactive Java tools for exploring high dimensional data, http://www.stat.sc.edu/~west/bradley/

  4. Bugrien, J.B., Kent, J.T.: Independent component analysis: A approach to clustering. In: Proc. LASR Statistics Workshop, pp. 1–4 (2005)

    Google Scholar 

  5. Düntsch, I.: A logic for rough sets. Theoretical Computer Science 179, 427–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 Pt. II, 179–188 (1936)

    Google Scholar 

  7. Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach to knowledge discovery. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 513–552. Springer, Berlin (2004)

    Google Scholar 

  8. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (eds.): Feature Extraction. Foundations and Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, Berlin (2001)

    MATH  Google Scholar 

  10. Henry, C., Peters, J.F.: Image Pattern Recognition Using Approximation Spaces and Near Sets. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 475–482. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kumusaka, N., Shibata, R.: High dimensional data visualization: The textile plot, Research Report KSTS/RR-2006/001, Department of Mathematics, Keio University, Computational Statistics & Data Analysis (February 13, 2006) (submitted)

    Google Scholar 

  12. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  13. Murray, J.A., Bradley, H., Craigie, W., Onions, C.: The Oxford English Dictionary. Oxford University Press, London (1933)

    Google Scholar 

  14. Orłowska, E.: Semantics of Vague Concepts. Applications of Rough Sets, Institute for Computer Science, Polish Academy of Sciences, Report 469 (1982); Orłowska, E.: Semantics of Vague Concepts. In: Dorn, G., Weingartner, P. (eds.) Foundations of Logic and Linguistics. Problems and Solutions, pp. 465–482. Plenum Press, London/NY (1985)

    Google Scholar 

  15. Pavel, M.: Fundamentals of Pattern Recognition, 2nd edn. Marcel Dekker Inc., New York (1993)

    MATH  Google Scholar 

  16. Pawlak, Z.: Classification of Objects by Means of Attributes, Institute for Computer Science, Polish Academy of Sciences, Report 429 (1981)

    Google Scholar 

  17. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peters, J.F.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae 76, 1–28 (2007)

    MathSciNet  Google Scholar 

  19. Peters, J.F.: Near sets. General theory about nearness of objects. Applied Mathematical Sciences 1(53), 2029–2609 (2007)

    Google Scholar 

  20. Peters, J.F.: Near Sets. Toward Approximation Space-Based Object Recognition. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 22–33. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Peters, J.F.: Classification of objects by means of features. In: Proc. IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI 2007), Honolulu, Hawaii, pp. 1–8 (2007)

    Google Scholar 

  22. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. In: Lindemann, G., Schlilngloff, H., et al. (eds.) Proc. Concurrency, Specification & Programming (CS&P 2006), Informatik-Berichte Nr. 206, Humboldt-Universität zu Berlin, pp. 434–445 (2006)

    Google Scholar 

  23. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of Objects: Extension of Approximation Space Model. Fundamenta Informaticae 79, 1–24 (2007)

    MathSciNet  Google Scholar 

  24. Peters, J.F., Henry, C., Gunderson, D.S.: A Biologically-inspired approximate adaptive learning control strategies: A rough set approach. International Journal of Hybrid Intelligent Systems 4(4), 203–216 (2007)

    MATH  Google Scholar 

  25. Peters, J.F., Henry, C., Ramanna, S.: Rough Ethograms: Study of Intelligent System behaviour. In: Kłopotek, M.A., Wierzchoń, S., Trojanowski, K. (eds.) New Trends in Intelligent Information Processing and Web Mining (IIS 2005), Gdańsk, Poland, pp. 117–126 (2005)

    Google Scholar 

  26. Polkowski, L.: Rough Sets. Mathematical Foundations. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  27. Rissanen, J.J.: A universal prior for integers and estimation by Minimum Description Length. Annals of Statistics 11(2), 416–431 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rough Sets Data Explorer, Version 2.2, ©1999-2002 IDSS, http://idss.cs.put.poznan.pl/site/software.html

  29. Shankar, B.U.: Novel classification and segmentation techniques with application to remotely sensed images. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 295–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Journal 27, 279–423, 623–656 (1948)

    MathSciNet  Google Scholar 

  31. Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y., Wildberger, A.M. (eds.) Soft Computing, Simulation Councils, San Diego, pp. 18–21 (1995)

    Google Scholar 

  32. Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 175–189. Springer, Heidelberg (2005)

    Google Scholar 

  33. Skowron, A., Stepaniuk, J., Peters, J.F., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zbigniew W. Raś Shusaku Tsumoto Djamel Zighed

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peters, J.F., Ramanna, S. (2008). Feature Selection: Near Set Approach. In: Raś, Z.W., Tsumoto, S., Zighed, D. (eds) Mining Complex Data. MCD 2007. Lecture Notes in Computer Science(), vol 4944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68416-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68416-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68415-2

  • Online ISBN: 978-3-540-68416-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics