Skip to main content
  • 1631 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, W.E., Anderson, C.E.: History and application of hydrocodes in hypervelocity impact. Int. J. Impact Eng., 5, 423-439, (1987)

    Article  Google Scholar 

  2. Alder, B., Fernbach, S., Rotenberg, M.: Methods in Computational Physics, Volume 3, Fundamental Methods in Hydrodynamics. Academic, New York, (1964)

    Google Scholar 

  3. Belytschko, T., Kennedy, J.M., Schoeberle D.F.: On finite element and differ-ence formulations of transient fluid-structure problems. In: Proceedings of Com-putations Methods in Nuclear Engineering, pp. IV39-IV54, Charleston, SC. American Nuclear Society, Washington, DC (1975)

    Google Scholar 

  4. Benz, W.: Smooth particle hydrodynamics: A review. Technical Report Preprint Series No. 2884, Harvard-Smithsonian Center for Astrophysics (1989)

    Google Scholar 

  5. Gingold, R.A., Monaghan J.J.: Smoothed particle hydrodynamics - theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(2), 275-389 (1977)

    ADS  Google Scholar 

  6. Libersky, L.D., Petschek, A.G.: Smoothed particle hydrodynamics with strength of materials. In: Crowley, W.P., Fritts, M.J., Trease, H.E. (eds.) Proceedings of the Next Free-Lagrange Conference, pp. 248-257, Jackson Hole, WY, (1991)

    Google Scholar 

  7. Belytschko, T., Lu, Y.Y., Gu L.: Element free galerkin methods. Int. J. Numer. Methods Eng. 37, 229-256, (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolbow, J., Belytschko, T.: An introduction to programming the meshless ele-ment free galerkin method. Arch. Computat. Methods Eng. 5(3), 207-241 (1998)

    Article  MathSciNet  Google Scholar 

  9. Belytschko, T.: Meshfree and Particle Methods. Wiley, New York (2005)

    Google Scholar 

  10. Liu, W.K., Jun S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Eng. 20, 1081-1106 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, W.K., Hao, S., Belytschko, T., Li, S.F., Chang, C.T.: Multiple scale meshfree methods for damage fracture and localization. Computat. Mater. Sci. 16(1-4), 197-205 (1999)

    Article  Google Scholar 

  12. Wang, X.D., Liu, X.D.: Extended immersed boundary method using fem and rkpm. Comput. Methods Appl. Mech. Eng. 193(12-14), 1305-1321 (2004)

    Article  MATH  Google Scholar 

  13. Li, S., Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55, 1-34 (2002)

    Article  Google Scholar 

  14. Randles, P., Libersky, L.: Normalized SPH with stress points. Int. J. Numer. Methods Eng. 48, 1445-1462 (2000)

    Article  MATH  Google Scholar 

  15. Huang, H., Dyka, C.T., Saigal, S.: Hybrid particle methods in frictionless impact-contact problems. Int. J. Numer. Methods Eng. 61, 2250-2272 (2004)

    Article  MATH  Google Scholar 

  16. Belytschko, T., Liu, W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  17. Dahlquist, G., Bjorck, A.: Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ (1974)

    Google Scholar 

  18. Zienkiewicz, O.C., Taylor, R.L.: Finite Element Method(3volumes). Butterworth-Heinemann, London (2000)

    Google Scholar 

  19. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ (1987)

    MATH  Google Scholar 

  20. Bowers, R.L. Wilson, J.R.: Numerical Modeling in Applied Physics and Astrophysics. Jones and Bartlett, Boston (1991)

    MATH  Google Scholar 

  21. LeVeque, R.J., Mihalas, D., Dorfi, E.A., Muller, E.: Computational Methods for Astrophysical Fluid Flow. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  22. Noh, W.F.: CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code. In: Methods in Computational Physics, pp. 117-179. Academic, New York (1964)

    Google Scholar 

  23. Wilkins, M.: Calculation of Elastic-Plastic Flow, vol. 3, pp. 211-263. Academic, New York (1964)

    Google Scholar 

  24. Margolin, L., Shashkov, M.: Using a curvilinear grid to construct symmetrypreserving discretizations for Lagrangian gas dynamics. J. Computat. Phys. 149(2),389-417 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Hyman, J., Shashkov, M., Steinberg, S.: The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods. Comput. Math. Appl., 42(12):1527-1547 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Godunov, S.K.: Finite difference method for numerical computation of discontin-uous solutions of the equations of fluid dynamics. Math. Sborn. 47(3), 271-306 (1959)

    MathSciNet  Google Scholar 

  27. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, Berlin Heidelberg New York (1976)

    MATH  Google Scholar 

  28. Menikoff, R., Plohr, B.J.: The riemann problem for fluid-flow of real materials. Rev. Mod. Phys. 61(1), 75-130 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Dukowicz, J.K.: A general, non-iterative riemann solver for Godunov’s method. J. Computat. Phys. 61,. 119-137 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Hancock, S.: PISCES 2DELK Theoretical Manual. Physics International (1985)

    Google Scholar 

  31. Van Leer, B.: Towards the ultimate conservative difference scheme IV: A new approach to numerical convection. J. Computat. Phys. 23, 276-299 (1977)

    Article  ADS  Google Scholar 

  32. Colella,P., Woodward, P.: The piecewise parabolic method (ppm) for gas dynamical simulations. J. Computat. Phys. 54, 174-201 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Harten, A., Engquist, B., Osher, S.: Uniformly high order accurate essentially non-oscillatory schemes. J. Computat. Phys. 131(1), 3-47 (1997)

    Article  MATH  ADS  Google Scholar 

  34. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Computat. Phys. 77(2), 439-471 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Addessio, F.L., Carroll, D.E., Dukowicz, J.K., Harlow, F.H., Johnson, J.N., Kaskiwa, B.A., Maltrud, M.E., Ruppel, H.M.: CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Technical Report UC-32, Los Alamos National Laboratory (1988)

    Google Scholar 

  36. Dukowicz, J.K., Cline M.C., Addessio, F.L.: A general topology Godunov method. J. Computat. Phys. 82, 29-63 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Trangenstein, J.A., Colella, P.: A higher-order Godunov method for modeling finite deformation in elastic-plastic solids. Commun. Pure Appl. Math. 44(1), 41-100 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. Miller, G.H., Colella, P.: A high-order Eulerian Godunov method for elastic-plastic flow in solids. J. Computat. Phys. 167(1), 131-176 (2001)

    Article  MATH  ADS  Google Scholar 

  39. Evans, M.E., Harlow, F.H.: The particle-in-cell method for hydrodynamic cal-culations. Technical Report LA-2139, Los Alamos National Laboratory (1957)

    Google Scholar 

  40. Brackbill, J.U., Ruppel, H.M.: FLIP: A method for adaptively zoned, particle-in-cell calculations for fluid flows in two dimensions. J. Computat. Phys. 65, 314-343 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Sulsky, D., Zhou, S.-J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236-252 (1995)

    Article  MATH  ADS  Google Scholar 

  42. Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5(6), 477-495, (2004)

    Google Scholar 

  43. Wieckowsk, Z.: The material point method in large strain engineering problems. Computer Methods in Applied Mechanics and Engineering, 193:4417-4438, 2004

    Article  Google Scholar 

  44. Bonet, J., Kulasegaram, S., Rodriguez-Paz, M.X., Profit, M.: Variational for-mulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput. Methods Appl. Mech. Eng. 193, 1245-1256 (2004)

    Article  MATH  Google Scholar 

  45. Belytschko, T., Organ, D., Krongauz, Y.: A coupled finite element - element free Galerkin method. Computat. Mech. 17, 186-195 (1995)

    MATH  MathSciNet  ADS  Google Scholar 

  46. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Liu, W.K.: Smoothing and accelerated computations in the element free galerkin method. J. Computat. Appl. Mech. 74, 111-126 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  47. Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Krysl, P.: Meshless meth-ods: An overview and recent developments. Comput. Methods Appl. Mech. Eng. 139,3-47 (1996)

    Article  MATH  Google Scholar 

  48. Melenk, J.M., Babuska, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1-4):289-314 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. Nayroles, B., Touzot, G., Villon, P.: The diffuse elements method. Comp. Ren. Acad. Sci. Ser. II 313(2), 133-138 (1991)

    MATH  Google Scholar 

  50. Brackbill, J.U., Monaghan J.J. (eds.) Particle methods in fluid dynamics and plasma physics. In: Proceedings of the Workshop on Particle Methods in Fluid Dynamics and Plasma Physics, Los Alamos, April 13-15. Comput. Phys. Commun. 48(1) (1988)

    Google Scholar 

  51. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Computat. 37, 141-158 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  52. Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232-237 (1950)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Benson, D.J.: A new two-dimensional flux-limited viscosity for impact calcula-tions. Comput. Methods Appl. Mech. Eng. 93, 39-95 (1991)

    Article  MATH  Google Scholar 

  54. Kuropatenko, V.F. In: Difference Methods for Solutions of Problems of Math-ematical Physics, I, ed., Janen KO, N. N., American Mathematical Society, Providence, RI (1967)

    Google Scholar 

  55. Noh, W.F.: Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. Technical Report UCRL-53669, Lawrence Livermore National Laboratory (1985)

    Google Scholar 

  56. Wilkins: M.L.: Use of artificial viscosity in multidimensional fluid dynamic cal-culations. J. Computat. Phys. 36, 381-303 (1980)

    Article  MathSciNet  Google Scholar 

  57. Christensen, R.: Personal communication (1989)

    Google Scholar 

  58. N. Kikuchi and J. T. Oden. Contact Problems in Elasticity: A Study of Varia-tional Inequalities and Finite Element Methods for a Class of Contact Problems in Elasticity,SIAM Studies Vol. 8. SIAM, USA (1986)

    Google Scholar 

  59. Hallquist, J.O., Goudreau, G.L., Benson, D.J.: Sliding interfaces with contact-impact in large-scale lagrangian computations. Comput. Methods Appl. Mech. Eng. 51(1/3), 107-137 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  60. Belytschko, T., Neal, M.O.: Contact-impact by the pinball algorithm with penalty, projection, and lagrangian methods. In: Proceedings of the Sympo-sium on Computational Techniques for Impact, Penetration, and Performation of Solids, Paris, France, December. American Society of Mechanical Engineers, New York (1989)

    Google Scholar 

  61. Benson, D.J., Hallquist, J.O.: A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Methods Appl. Mech. Eng. 78, 141-163 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  62. Taylor, L.M., Flanagan, D.P.: PRONTO 2D a two-dimensional transient solid dynamics program. Technical Report SAND86-0594, Sandia National Labora-tories (1987)

    Google Scholar 

  63. Asaro, R.J.: Overview no. 42, texture development and strain hardening in rate dependent polycrystals. Acta Metall. 33(6), 923-953 (1985)

    Article  Google Scholar 

  64. Benson, D.J.: A mixture theory for contact in multi-material Eulerian formulations. Comput. Methods Appl. Mech. Eng. 140, 59-86 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. Hyman, J.M.: Numerical methods for tracking interfaces. Physica 12D, 396-407 (1984)

    ADS  Google Scholar 

  66. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, Amsterdam (1987)

    MATH  Google Scholar 

  67. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235-394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  68. Rider, W.J., Kothe, D.B.: Stretching and tearing interface tracking methods. Technical Report AIAA 95-1717, AIAA (1995)

    Google Scholar 

  69. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Computat. Phys. 141,112-152 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  70. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech., 31, 567-603 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  71. Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev., 55(2), 151-165 (2002)

    Article  Google Scholar 

  72. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  73. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  74. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.), Numerical Methods for Fluid Dynamics, pp. 273-285. Academic, London (1982)

    Google Scholar 

  75. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: Variational level set approach to multiphase motion. J. Computat. Phys. 127(1), 179-195 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  76. Benson, D.J.: Eulerian finite element methods for the micromechanics of het-erogeneous materials: Dynamic prioritization of material interfaces. Comput. Methods Appl. Mech. Eng. 151, 343-360 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  77. Mosso, S., Clancy, S.: A geometrically derived priority system for Youngs’ interface reconstruction. Technical Report LA-CP-95-81, Los Alamos National Laboratory (1994)

    Google Scholar 

  78. Johnson, C.: A new approach to algorithms for convection problems which are based on exact transport + projection. Comput. Methods Appl. Mech. Eng. (1992)

    Google Scholar 

  79. Dukowicz, J.K.: Conservative rezoning (remapping) for general quadrilateral meshes. J. Comput. Phys. 54, 411-424 (1984)

    Article  MATH  ADS  Google Scholar 

  80. Kurbatskii, K.A., Mankbadi, R.R.: Review of computational aeroacoustics algorithms. Int. J. Comput. Fluid Dyn. 18(6), 533-546 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  81. Alhumaizi, K.: Comparison of finite difference methods for the numerical simu-lation of reacting flow. Comput. Chem. Eng. 28(9), 1759-1769 (2004)

    Article  Google Scholar 

  82. Lyra, P.R.M., Morgan, K.: A review and comparative study of upwind biased schemes for compressible flow computation. Part iii: Multidimensional extension on unstructured grids. Arch. Comput. Methods Eng. 9(3), 207-256 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  83. Chorin, A., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and and numerical algorithm. Commun. Pure Appl. Math. 31, 205-256 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  84. Eidelman, S., Colella, P., Shreeve, R.P.S.: Application of the Godunov method and higher order extensionas of the govunov method to cascade flow model-ing. In: AIAA paper 83-1941-CP, AIAA 6th Computational Fluid Dynamics Conference, Danvers, MA. AIAA, USA (1983)

    Google Scholar 

  85. Van Leer, B.: Multidimensional Explicit Difference Schemes for Hyperbolic Con-servation Laws, vol. 6, p. 493. Elsevier, New York (1984)

    Google Scholar 

  86. Pilliod, Jr., J.E., Puckett, E.G.: Second-order volume-of-fluid algorithms for tracking material interfaces. Technical Report LBNL-40744, Lawrence Berkeley National Laboratory (1997)

    Google Scholar 

  87. Mosso, S.J., Swartz, B.K., Kothe, D.B., Ferrell, R.C.: A parallel, volume tracking algorithm for unstructured meshes. In: Parallel Computational Fluid Dynamics, Italy (1996)

    Google Scholar 

  88. Garrioch, S.H., Baliga, B.R.: Interface tracking using a multidimensional advec-tion technique based on skewed subadvections. In: Proceedings of ASME Fluids Engineering Division Summer Meeting, Washington DC, June 21-25. ASME, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Benson, D.J. (2007). Numerical Methods for Shocks in Solids. In: Horie, Y. (eds) ShockWave Science and Technology Reference Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68408-4_7

Download citation

Publish with us

Policies and ethics