Skip to main content

Failure Waves and Their Effects on Penetration Mechanics in Glass and Ceramics

  • Chapter
ShockWave Science and Technology Reference Library

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C.E., Chocron, I.S., Walker J.D.: Analysis of time-resolved pene-tration of long rods into glass targets. In: 29th International Conference and Exposition on Advanced Ceramics and Composites, Cocoa Beach, FL, 24-27 January (2005)

    Google Scholar 

  2. Anderson, C.E., Walker, J.D.: Ceramic dwell and defeat of the 0.30-cal AP projectile. In: Proceeding of 15th U.S.Army Symposium on Solid Mechanics, pp. 17-29, Batelle Press (1999)

    Google Scholar 

  3. Backofen, J.E.: Private communication (2005)

    Google Scholar 

  4. Behner, T., Hohler, V., Anderson, C.E., Jr., Orphal, D.L., Templeton, D.W.: Accuracy and position requirements for penetration experiments to detect the effect of failure kinetics in ceramics. In: 21st International Symposium Ballistics, Adelaide, Australia, 19-23 April (2004)

    Google Scholar 

  5. Berhard, R.P., Hörz, F.: Craters in aluminum 1100 b soda-lime glass spheres at 1 to 7 km/s. Int. J. Impact Eng. 17, 69-80 (1995)

    Article  Google Scholar 

  6. Bless, S.: Using bar impact to determine dynamic properties of ceramics. In: McCauley, J.W., et al. (eds.) Ceramic Armor Materials by Design American Ceramic Society, Westerville, OH (2002)

    Google Scholar 

  7. Bless, S.J., Rajendran, A.M.: Initiation and propagation of damage caused by impact on brittle materials. In: Davison, L., Grady, D.E. (eds.) Fracture and Fragmentation of Brittle Solids Springer, Berlin Heidelberg New York (1994)

    Google Scholar 

  8. Bless, S.J., Brar, N.S.: Impact induced fracture of glass bars. In: Schmidt, S.C., et al. (eds.) High Pressure Science and Technology - 1993, AIP Conference Proceedings, vol. 309, pp. 1813-1816 (1994)

    Google Scholar 

  9. Bless, S.J., Brar, N.S., Kanel, G.I., Rosenberg, Z.: Failure waves in glass Am. Cer. Soc. 75, 1002-1004 (1992)

    Article  Google Scholar 

  10. Bourne, N.K., Millet, J.C.F., Rosenberg, Z.: J. Appl. Phys. 80, 4328-4331 (1997)

    Article  ADS  Google Scholar 

  11. Bourne, N.K., Rosenberg, Z.: The dynamic response of soda-lime glass. In: Schmidt, S.C., Tao, W.C. (eds.) Shock Compression of Condensed Matter -1995. AIP Conference Proceedings, vol. 370, pp. 567-572 (1996)

    Google Scholar 

  12. Bourne, N.K., Rosenberg, Z., Millet, J.C.F.: The plate impact response of three glasses. In: Jones, N., et al. (eds.) Structures under Shock and Impact IV, pp. 553-562. Computational Mechanics Publications, Southampton (1996)

    Google Scholar 

  13. Brar, N.S., Rosenberg, Z., Bless, S.J.: J. de Physique IV, Coll. C3, Suppl. au. J. de Physique III 1, C3-639-C3644 (1991a)

    Google Scholar 

  14. Brar, N.S., Espinosa, H.D., Review of micromechanics of failure waves in silicate glasses, Chem Phys Reports 317-342 (1998)

    Google Scholar 

  15. Brar, N.S., Rosenberg, Z., Bless, S.J.: Appl. Phys. Lett. 59, 3396-3398 (1991b)

    Article  ADS  Google Scholar 

  16. Cagnoux, J.: Deformation et Ruine d’un Verre Pyrex Sumis a un Chock Intense Thesis, University Poitiers (1985)

    Google Scholar 

  17. Cazamias, J.U., Bless, S.J., Simha, C.H.M., Hartnett, T. M.: dynamic failure of a transparent polycrystalline ceramic. In: Proceedings of Amercian Physi-cal Society Conference on Shock Compression of Condensed Matter, Snowbird, Utah, June 28-July 2 (1999)

    Google Scholar 

  18. Chandrasekar, S., Chaudri, M.M.: The explosive disintegration of prince Rupert’s drops. Phil Mag. B 70(6), 1195-1218 (1994)

    Article  Google Scholar 

  19. Cherepanov, G.P.: Mechanics of Brittle Failure,(A.P. Peabody, transl.) McGraw-Hill, New York (1979)

    Google Scholar 

  20. Clifton, R.J.: Analysis of failure waves in glasses. Appl. Mech. Rev. 46, 540-546 (1993)

    Article  Google Scholar 

  21. Clifton, R.J., Millo, M., Brar, N.S. Effect of Shear of Failure Waves in Soda Lime Glass, In Shock Compression of Condensed Matter 1997 (1998)

    Google Scholar 

  22. Dandekar, D.P., Index of refraction and mechanical behavior of soda lime glass under shock and release wave propagations, J. Appl. Phys., 6614-6622 (1998)

    Google Scholar 

  23. Dandekar, D.P.: Private Communication (1999)

    Google Scholar 

  24. Dandekar, D.P.: Spall strength of silicon carbide under normal and simultaneous compression - shear shock save loading. Int. J. Appl. Cer., 261-268 (2004)

    Google Scholar 

  25. Dandekar, D.P., Beaulieu, P.A.: Failure wave under shock wave compression in soda-lime glass. In: Murr, L.E., et al. (eds.) Metallurgical and Materials Appli-cations of Shock-Wave and High-Strain-Rate Phenomena, pp. 211-218. Elsevier, New York (1995)

    Google Scholar 

  26. Espinosa, H.D., Brar, N.S.: Review of micromechanics of failure waves in silicate glasses. Chem. Phy. Rep. 17(1-2), 317-342 (1998)

    Google Scholar 

  27. Espinosa, H.D, Xu, Y., Brar, N.S.: Micromechanics of failure waves in glass II: modeling. J. Am. Cer. Soc. 80, 2074-2085 (1997)

    Google Scholar 

  28. Feng, R.: Formation and propagation of failure in shocked glasses. J. Appl. Phys. 87,1693-1700 (2000)

    Article  ADS  Google Scholar 

  29. Field, J.E., Tsembelis, K., Proud, W.G., Brar, N.S.: Issues related to measure lateral stress in alumina ceramics. In: 13th APS Topical Conference on Shock Compression of Condensed Matter, Portland, OR, July (2003)

    Google Scholar 

  30. Galin, C.I., Ryabaor, V.A., Fodoseev, D.R., Cherepanov, C.I.: Dokal Akad. Nafuk SSSR 169, 1034 (1966)

    Google Scholar 

  31. Gibbons, R.V., Ahrens, T.J.: Shock metamorphism of silicate glasses. J. Geophys. Res. 76, 5489-5498 (1971)

    Article  ADS  Google Scholar 

  32. Ginzberg, A., Rosenberg, Z.: Using reverberation techniques to study the prop-erties of of shock loaded soda-lime glass. In: Schmidt, S.C., et al. (eds.) Shock Compression of Condensed Matter - 1997, AIP Conference Proceedings vol. 429, pp. 529-531 (1998)

    Google Scholar 

  33. Glenn, L., Janach, W.: Failure of granite cylinders under impact loading. Int. J. Frac. 13, 301-317 (1977)

    Google Scholar 

  34. Grady, D.E.: Dynamic properties of ceramic materials. Sandia National Laboratory Report, SAND94-3266 (1995)

    Google Scholar 

  35. Grady, D.E., Chhabildas, L.: Shock-wave properties of soda-lime glass. In: Iyer, K.R., Chou, S. (eds.) Proceedings of 14th US Army Symposium on Solid Mechanics, pp. 29-38. Battelle Seattle, WA (1997)

    Google Scholar 

  36. Hauver, G.E., Netherwood, P.H., Benck, R.F., Melani, A.: Penetration of shaped-charge jets into glass and crystalline quartz. Ballistic Research Labo-ratory Report BRL-TR-3273f (1991)

    Google Scholar 

  37. Hong-Liang, H., Xiao-Gang, J., Fu-Qian, J., Kanel, G.I.: Chin. Phys. Lett. 14(7),538-541 (1997)

    Article  ADS  Google Scholar 

  38. Hornemann, U., Rothenhäusler, H., Senf, H., Kalthoff, J.F., Winkler, S.: Inst. Phys. Conf. Ser. 70, 291-298 (1984)

    Google Scholar 

  39. Johnson, G.R., Holmquist, T.J.: An improved computational constitutive model for brittle materials. In: Schmidt, S.C., Schaner, J.W., Samara, G.A., Ross, M. (eds.) High Pressure Science and Technology - 1993, AIP Conference Proceed-ings (1994)

    Google Scholar 

  40. Kanel, G.I., Bless, S.: Compressive fracture of brittle solids under shock-wave loading. In: McCauley, J.W., et al. (eds.) Ceramic Armor Materials by Design. American Ceramic Society, Westerville, OH (2002)

    Google Scholar 

  41. Kanel, G.I., Razorenov, S.V., Utkin, A.V., He, H., Jing, F., Jin, X.: Influence of the load conditions on the failure waves in glasses, High Press. Res. 16, 27-42 (1998)

    Article  ADS  Google Scholar 

  42. Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: The failure waves and spallations in homogeneous brittle materials. In: Schmidt, S.C., et al. (eds.) Shock Com-pression of Condensed Matter - 1991, pp. 451-454. Elsevier Science, New York (1992)

    Google Scholar 

  43. Kanel, G.I., Bogach, A.A., Razorenov, S.V., Savinykh, A.S., Chen, Z., Rajen-dran, A.M.: A study of the failure wave phenomenon in brittle materials. In: Furnish, M.D., et al. (eds.) Shock Compression of Condensed Matter - 2003. AIP CP 706 (2004)

    Google Scholar 

  44. Kozhuskhko, A.A., Rykova, I.I., Sinani, A.B.: Resistance of ceramics to pen-etration at impact velocities above 5 km/s. J. de Physique IV C3117-C3122 (1991)

    Google Scholar 

  45. Kozhuskhko, A.A., Rykova, I.I., Held, M.: On the shortening of the effective length of a shaped-charge jet in penetrating ceramic materials. Tech. Phys. Lett. 20, 377-378 (1994)

    ADS  Google Scholar 

  46. Lundberg, P., Renström, R., Lundberg, B.: Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration. Int. J. Impact Eng. 259-275 (2000)

    Google Scholar 

  47. Marsh, D.M.: Plastic flow and fracture of glass. Proc. R. Soc. A 282, 33-43 (1964)

    Article  ADS  Google Scholar 

  48. Moran, B., Glenn, L.A., Kusubov, A., Jet Penetration in Glass, J. de Physique IV, C3, 147-154 (1991)

    Google Scholar 

  49. Murray, N.H., Bourne, N.K., Field, J.E., Rosenberg, Z.: Symmetrical Taylor impact of glass bars. In: Schmidt, S.C., et al. (eds.) Shock Compression of Condensed Matter - 1997, AIP Conference Proceedings, vol. 429, pp. 533-536 (1998)

    Google Scholar 

  50. Murray, N.H., Millett, J.C.F., Proud, W.G., Rosenberg, Z., Issues surround-ing lateral stress measurements in alumina ceramics, In Shock Compression of Condensed Matter - 1999 (2000)

    Google Scholar 

  51. Naimark, O.B.: Collective properties of defect ensembles and some nonlinear problems of plasticity and fracture. Phys. Mesomech. 6, 39-63 (2003)

    Google Scholar 

  52. Nickolaevskii, V.N.: Int. J. Eng. Sci. 19, 41-56 (1981)

    Article  Google Scholar 

  53. O’Donnell, R.G., Woodward, R.L., et al.: Fragmentation of alumina in ballistic impact as a function of grade and confinement. In: 12th International Sym-posium on Ballistics, Southwest Research Institute San Antonio, TX, vol. 1, pp. 410-418 (1990)

    Google Scholar 

  54. Orphal, D.L., Kozhushko, A.A., Sinani, A.B.: Possible detection of failure wave velocity in SiC using hypervelocity penetration experiments. In: Furnish, M.D., Chhabildas, L.C., Hixson, R.S. (eds.) Shock Compression of Condensed Matter -1999. AIP Conference Proceedings, vol. 505, pp. 577-580 (2000)

    Google Scholar 

  55. Partom, Y.: Modeling failure waves in glass. Int. J. Impact Eng. 21, 791-799 (1998)

    Article  Google Scholar 

  56. Patel, P.J., Gilde, G.A., Dehmer, P.G., McCauley, J.W.: Transparent ceramics for armor and EM window applications. Proc. SPIE 4102, 1-14 (2000)

    Article  ADS  Google Scholar 

  57. Pickup, I.M., Millet, J.C.F., Bourne, N.K.: The shock behavior of a Si02 -Li02 transparent glass-ceramic armour material. In: Shock Compression of Condensed Matter - 2003. AIP Conference Proceedings (2004)

    Google Scholar 

  58. Pickup, I.M.: The correlation of microstructural and mechanical characteristics of silicon carbide with ballistic performance. In: 29th International Conference and Exposition on Advanced Ceramics and Composites, Cocoa Beach, FL, 24-27 January (2005)

    Google Scholar 

  59. Radford, D., Willmott, G.R., Walley, S.M., Field, J.E.: Failure mechanisms in ductile and brittle materials during Taylor impact. J. Phys. IV, France (DYMAT2003) 110, 687-692 (2003)

    Article  Google Scholar 

  60. Raiser, G., Clifton, R.J.: Failure waves in uniaxial compression of an aluminosil-icate glass. In: High-Pressure Science and Technology - 1993, pp. 1039-1042. American Institute of Physics, New York (1994)

    Google Scholar 

  61. Raiser, G.F., Wise, J.L., Clifton, R.J., Grady, D.E., Cox, D.E.: J. Appl. Phys. 75,3862-3869 (1994)

    Article  ADS  Google Scholar 

  62. Rajendran, A.M., Dietenberg, M.A., Grove, D.J.: Microphysical model to de-scribe impact behavior of ceramics. In: Desai, C.S., et al. (eds.) Const. Laws for Engr. Mat’ls: Theory and Applications. Elsevier Science, New York (1991)

    Google Scholar 

  63. Reshyansky, A.D., Bourne, N.K.: Factors influencing the shape of the fracture wave induced by the rod impact of a brittle material. In: Shock Compression of Condensed Matter - 2001. American Institute of Physics, New York (2001)

    Google Scholar 

  64. Russell, R., Bless, S., Beno, T.: Impact induced failure phenomenology in homa-lite bars. In: Shock Compression of Condensed Matter - 2001. American Institute of Physics, New York (2002)

    Google Scholar 

  65. Satapathy, S., Bless, S.: Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis. Mech. Mater. 23, 323-330 (1996)

    Article  Google Scholar 

  66. Satapathy, S., Bless, S., Ivanov, S.M.: The effects of failure wave on penetra-tion resistance of glass. In: Proceedings of 18th International Symposium on Ballistics, San Antonio, TX, 15-19 November (1999)

    Google Scholar 

  67. Sundaram, S., Clifton R.J., Flow behavior of soda-lime glass at high pressures and high shear rates, In AIP Conf. Proceedings, no 429 (1998)

    Google Scholar 

  68. Simha, C.-H., Gupta, M.: Time-dependent inelastic deformation of shocked soda-lime glass. Appl. Phys. 95 (2004)

    Google Scholar 

  69. Solve, G., Cagnoux, J.: The behavior of Pyrex Glass against a shaped-charge jet. In: Shock Compression of Condensed Matter - 1989, American Institute of Physics, New York (1990)

    Google Scholar 

  70. Wilkins, M.L., Landingham, R.L., Honodel, C.A.: Fifth progress report light armor program. Lawrence Livermore National Laboratory Report UCRL-50980 (1971)

    Google Scholar 

  71. Young, C., Dubugnon, O.: A reflected shear-wave technique for determining dynamic rock strength. Int. J. Rock. Mech., Min. Sci. 247-259 (1977)

    Google Scholar 

  72. Zilberbrand, E.L., Zlatin, N.A., Kozhushko, A.A., Polozenko, V.I., Pugachev, G.S., Sinani, A.B.: Mechanism of interaction of a plastic striker with a brittle solid. Sov Phys. Tech. Phys. 34, 1123-1124 (1989)

    Google Scholar 

  73. Zilberbrand, E.L., Vlasov, A.S., Cazamias, J.U., Bless, S.J., Kozhushko, A.A.: Failure wave effects in hypervelocity penetration. Int. J. Impact Eng. 23, 995-1001 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bless, S.J., Brar, N.S. (2007). Failure Waves and Their Effects on Penetration Mechanics in Glass and Ceramics. In: Horie, Y. (eds) ShockWave Science and Technology Reference Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68408-4_3

Download citation

Publish with us

Policies and ethics