Skip to main content

Asymptotically Optimal Kinodynamic Motion Planning for Self-reconfigurable Robots

  • Chapter
Book cover Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

  • 1531 Accesses

Abstract

Self-reconfigurable robots are composed of many individual modules that can autonomously move to transform the shape and structure of the robot. In this paper we present a kinodynamically optimal algorithm for the following “x-axis to y-axis” reconfiguration problem: given a horizontal row of n modules, reconfigure that collection into a vertical column of n modules. The goal is to determine the sequence of movements of the modules that minimizes the movement time needed to achieve the desired reconfiguration of the modules. Prior work on self-reconfigurable (SR) robots assumed a constant velocity bound on module movement and so required time linear in n to solve this problem.

In this paper we define an abstract model that assumes unit bounds on various physical properties of modules such as shape, aspect ratio, mass, and the maximum magnitude of force that an individual module can exert. We also define concrete instances of our abstract model similar to those found in the prior literature on reconfigurable robots, including various examples where the modules are cubes that are attached and can apply forces to neighboring cubes. In one of these concrete models, the cube’s sides can contract and expand with controllable force, and in another the cubes can apply rotational torque to their neighbors. Our main result is a proof of tight Θ(\(\sqrt{n}\)) upper and lower bounds on the movement time for the above reconguration problem for concrete instances of our abstract model.

This paper’s analysis characterizes optimal reconfiguration movements in terms of basic laws of physics relating force, mass, acceleration, distance traveled, and movement time. A key property resulting from this is that through the simultaneous application of constant-bounded forces by a system of modules, certain modules in the system can achieve velocities exceeding any constant bounds. This delays modules with the least distance to travel when reconfiguring in order to accelerate modules that have the farthest to travel. We utilize this tradeoff in our algorithm for the x-axis to y-axis problem to achieve an O(\(\sqrt n\)) movement time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casal, A., Yim, M.: Self-reconfiguration planning for a class of modular robots. In: Proceedings of SPIE, Sensor Fusion and Decentralized Control in Robotic Systems II, vol. 3839, pp. 246–255 (1999)

    Google Scholar 

  2. Donald, B.R., Xavier, P.G., Canny, J.F., Reif, J.H.: Kinodynamic motion planning. Journal of the ACM 40(5), 1048–1066 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kotay, K., Rus, D.: Generic distributed assembly and repair algorithms for self-reconfiguring robots. In: Proc. of IEEE Intl. Conf. on Intelligent Robots and Systems (2004)

    Google Scholar 

  4. Pamecha, A., Chiang, C., Stein, D., Chirikjian, G.: Design and implementation of metamorphic robots. In: Proceedings of the 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference (1996)

    Google Scholar 

  5. Pamecha, A., Ebert-Uphoff, I., Chirikjian, G.: Useful metrics for modular robot motion planning. In: IEEE Trans. Robot. Automat., pp. 531–545 (1997)

    Google Scholar 

  6. Vassilvitskii, S., Kubica, J., Rieffel, E., Suh, J., Yim, M.: On the general reconfiguration problem for expanding cube style modular robots. In: Proceedings of the 2002 IEEE Int. Conference on Robotics and Automation, May 11-15, pp. 801–808 (2002)

    Google Scholar 

  7. Vona, M., Rus, D.: Self-reconfiguration planning with compressible unit modules. In: 1999 IEEE International Conference on Robotics and Automation (1999)

    Google Scholar 

  8. Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of metamorphic robot chains. In: PODC 2000, pp. 171–180 (2000)

    Google Scholar 

  9. Yim, M., Duff, D., Roufas, K.: Polybot: A modular reconfigurable robot. In: ICRA, pp. 514–520 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reif, J.H., Slee, S. (2008). Asymptotically Optimal Kinodynamic Motion Planning for Self-reconfigurable Robots. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics