Advertisement

F-FCSR Stream Ciphers

  • François Arnault
  • Thierry Berger
  • Cédric Lauradoux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4986)

Abstract

Feedback with Carry Shift Registers (FCSRs) are a promising alternative to Linear Feedback Shift Registers (LFSRs) for the design of stream ciphers. The main difference between these two automata lies in the computation of the feedback. While LFSRs use simple bitwise addition, FCSRs use addition with carries. Hence, the transition function of an FCSR is non-linear, more precisely quadratic. Since FCSRs were introduced by Goresky and Klapper [11], the properties of the sequences generated by an FCSR are now considered well mastered from a mathematical point of view.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnault, F., Berger, T.P., Necer, A.: Feedback with Carry Shift Registers synthesis with the Euclidean Algorithm. IEEE Trans. Inform. Theory 50(5), 910–917 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnault, F., Berger, T.P.: Design of new pseudo random generators based on a filtered FCSR automaton. In: SASC, State of the Art of Stream Ciphers Workshop, Bruges, Belgium, October 2004, pp. 109–120 (2004)Google Scholar
  3. 3.
    Arnault, F., Berger, T.P.: F-FCSR: design of a new class of stream ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Arnault, F., Berger, T.P., Minier, M.: On the security of FCSR-based pseudorandom generators. In: ECRYPT Network of Excellence - SASC Workshop (2007), http://sasc.crypto.rub.de/files/sasc2007_179.pdf
  5. 5.
    Arnault, F., Berger, T.P.: Design and properties of a new pseudorandom generator based on a filtered FCSR automaton. IEEE Trans. Computers 54(11), 1374–1383 (2005)CrossRefGoogle Scholar
  6. 6.
    Berger, T.P., Minier, M.: Two algebraic attacks against the F-FCSRs using the IV mode. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 143–154. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Goresky, M., Klapper, A.: Fibonacci and Galois representation of feedback with carry shift registers. IEEE Trans. Inform. Theory 48, 2826–2836 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goresky, M., Klapper, A.: Periodicity and distribution properties of combined FCSR sequences. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 334–341. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Jaulmes, E., Muller, F.: Cryptanalysis of ecrypt candidates F-FCSR-8 and F-FCSR-H. ECRYPT Stream Cipher Project Report 2005/046 (2005), http://www.ecrypt.eu.org/stream
  10. 10.
    Jaulmes, E., Muller, F.: Cryptanalysis of the F-FCSR stream cipher family. In: Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897, pp. 20–35. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approximation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 262–273. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Klapper, A., Goresky, M.: Feedback Shift Registers, 2-Adic Span, and Combiners with Memory. Journal of Cryptology 10, 111–147 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • François Arnault
    • 1
  • Thierry Berger
    • 1
  • Cédric Lauradoux
    • 2
  1. 1.XLIM DMIUniversité de LimogesFrance
  2. 2.INRIA RocquencourtFrance

Personalised recommendations