Skip to main content

Ocean biology from space

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

This chapter outlines the ways in which satellite data are being used by ocean biologists. Fifteen years ago, marine biology might have been considered the least likely of all the branches of oceanographic research to benefit from space measurements. In broad terms, biologists are concerned with understanding how particular organisms behave and react to their environment, and it must be admitted at the outset that satellites cannot see individual marine plants and animals.1 Even the planet’s largest animals, the cetaceans, have not been seen in the water from Earth-orbiting spacecraft. However, satellite ocean color data provide a reliable basis for estimating the concentrations of chlorophyll2 associated with the phytoplankton of the upper ocean. Phytoplankton are a fundamental component of marine ecosystems, the primary producers of organic compounds from solar energy, and the base of the food web in the ocean. Thus measuring them globally and learning about their spatial distribution ought to provide the basis for global and regional ecosystem studies in the ocean. These in turn are of importance for harvesting the ocean’s living resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken, J., J. R. Fishwick, S. J. Lavender, R. Barlow, G. Moore, and H. Sessions (2007), Validation of MERIS reflectance and chlorophyll during the BENCAL cruise October, 2002: Preliminary validation of new products for phytoplankton functional types and photosynthetic parameters. Int. J. Remote Sensing, 28, 497–516.

    Article  Google Scholar 

  • Alvain, S., C. Moulin, Y. Dandonneau, and F. M. Breon (2005), Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep-Sea Res. I, 52, 1989–2004.

    Article  Google Scholar 

  • Antoine, D., and A. Morel (1996), Oceanic primary production, 1: Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochemical Cycles, 10(1), 43–55.

    Article  Google Scholar 

  • Antoine, D., J.-M. André, and A. Morel (1996), Oceanic primary production, 2: Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles, 10(1), 57–69.

    Article  Google Scholar 

  • Armstrong, R. A. (1993), Remote sensing of submerged vegetation canopies for biomass estimation. Int. J. Remote Sensing, 14, 10–16.

    Article  Google Scholar 

  • Balch, W. M., P. M. Holligan, S. G. Ackleson, and K. J. Voss (1991), Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and Oceanography, 36, 629–643.

    Article  Google Scholar 

  • Barale, V., J.-M. Jaquet, and M. Ndiaye (2008), Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998–2003). Rem. Sens. Environ., 112, 3300–3313.

    Article  Google Scholar 

  • Barnes, R. S. K., and R. N. Hughes (1999), An Introduction to Marine Ecology (Third Edition, 286 pp.). Blackwell Science Ltd., Oxford, U.K.

    Book  Google Scholar 

  • Behrenfeld, M. J., and P. G. Falkowski (1997a), A consumer’s guide to phytoplankton primary production models. Limnology and Oceanography, 42, 1479–1491.

    Article  Google Scholar 

  • Behrenfeld, M. J., and P. G. Falkowski (1997b), Photosynthetic rates derived from satellitebased chlorophyll concentration. Limnology and Oceanography, 42, 1–20.

    Article  Google Scholar 

  • Behrenfeld, M., E. Boss, D. A. Siegel, and D. M. Shea (2005), Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles, 19(GB1006), doi: 10.1029/2004GB002299.

    Article  Google Scholar 

  • Bishop, J. K. B., and W. B. Rossow (1991), Spatial and temporal variability of global surface solar irradiance. J. Geophys. Res., 96, 16839–16858.

    Article  Google Scholar 

  • Bouvet, M., N. Hoepffner, and M. D. Dowell (2002), Parameterization of a spectral solar irradiance model for the global ocean using multiple satellite sensors. J. Geophys. Res., 107(C12), 3215, doi: 10.1029/2001JC001126.

    Article  Google Scholar 

  • Brock, J. C., S. Sathyendranath, and T. Platt (1998), Biohydro-optical classification of the northwestern Indian Ocean. Mar. Ecol. Prog. Ser., 165, 1–15.

    Article  Google Scholar 

  • Broerse, A. T. C., T. Tyrell, J. R. Young, A. J. Poulton, A. Merico, and W. M. Balch (2003), The cause of bright waters in the Bering Sea in winter. Cont. Shelf Res., 23, 1579–1596.

    Article  Google Scholar 

  • Brown, C., and G. P. Podestá (1997), Remote sensing of coccolithophore blooms in the Western South Atlantic Ocean. Rem. Sens. Environ., 60, 83–91.

    Article  Google Scholar 

  • Brown, C. W., and J. A. Yoder (1994), Coccolithophorid blooms in the global ocean. J. Geophys. Res., 99, 7467–7482.

    Article  Google Scholar 

  • Campbell, J. (1995), The lognormal distribution as a model for bio-optical variability in the sea. J. Geophys. Res, 100(C7), 13237–13254.

    Article  Google Scholar 

  • Campbell, J., D. Antoine, R. Armstrong, K. Arrigo, W. Balch, R. Barber, M. Behrenfeld, R. Bidigare, J. Bishop, M.-E. Carr et al. (2002), Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochemical Cycles, 16(3), 74.

    Article  Google Scholar 

  • Carr, M.-E., M. A. Friedrichs, M. Schmeltz, M. N. Aita, D. Antoine, K. R. Arrigo, I. Asanuma, O. Aumont, R. Barber, M. Behrenfeld et al. (2006), A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. II, 53, 741–770.

    Article  Google Scholar 

  • Chen, I.-C., P.-F. Lee, and W.-N. Tzeng (2005), Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors. Fish. Oceanogr., 14, 71–80.

    Article  Google Scholar 

  • Cushing, D. H. (1990), Plankton production and year-class strength in fish populations: An update of the match mismatch hypothesis. Adv. Mar. Biol., 26, 249–294.

    Article  Google Scholar 

  • Dekker, A., V. Brando, J. Anstee, S. Fyfe, T. Malthus, and E. Karpouzli (2006), Remote sensing of seagrass ecosystems: Use of spaceborne and airborne sensors. In A. Larkum, R. Orth, and C. Duarte (Eds.), Seagrasses: Biology, Ecology and Conservation (pp. 347–359). Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Dierssen, H. M., and R. C. Smith (2000), Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters. J. Geophys. Res., 105(C11), 26301–26312.

    Article  Google Scholar 

  • Dierssen, H. M., M. Vernet, and R. C. Smith (2000), Optimizing models for remotely estimating primary production in Antarctic coastal waters. Antarctic Science, 12(1), 20–32.

    Article  Google Scholar 

  • Dugdale, R. C., C. O. Davis, and F. P. Wilkerson (1997), Assessment of new production at the upwelling center at Point Conception, California, using nitrate estimated from remotely sensed sea surface temperature. J. Geophys. Res., 102, 8573–8585.

    Article  Google Scholar 

  • Dwivedi, R. M., H. U. Solanki, S. Nayak, D. Gulati, and V. S. Sonvanshi (2005), Exploration of fishery resources through integration of ocean colour and sea surface temperature. Ind. J. Mar. Sci., 34(4), 430–440.

    Google Scholar 

  • Edwards, M., and A. J. Richardson (2004), Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, 881–884.

    Article  Google Scholar 

  • Ellingson, R. G., and Y. Fouquart (1991), The intercomparison of radiation codes in climate models: An overview. J. Geophys. Res., 96, 8925.

    Article  Google Scholar 

  • Elskens, M., L. Goeyens, F. Dehairs, A. Rees, I. Joint, and W. Baeyens (1999), Improved estimation of f -ratio in natural phytoplankton assemblages. Deep-Sea Research, 46, 1793–1808.

    Article  Google Scholar 

  • Eppley, R. W. (1972), Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70, 1063–1085.

    Google Scholar 

  • Erickson, D. J., and B. E. Eaton (1993), Global biogeochemical cycling estimates with CZCS satellite data and general-circulation models. Geophys. Res. Lett., 20(8), 683–686.

    Article  Google Scholar 

  • Fiedler, P. C. (1983), Satellite remote sensing of the habitat of spawning anchovy in the southern California Bight. CalCOFI Rep., 24, 202–209.

    Google Scholar 

  • Fiedler, P. C., and H. J. Bernard (1987), Tuna aggregation and feeding near fronts observed in satellite imagery. Cont. Shelf Res., 7(8), 871–881.

    Article  Google Scholar 

  • Fiedler, P. C., G. B. Smith, and R. M. Laurs (1984), Fisheries applications of satellite data in the eastern North Pacific. Mar. Fish. Rev., 46(3), 1–13.

    Google Scholar 

  • Friedrichs, M. A. M., M.-E. Carr, R. Barber, M. Scardi, D. Antoine, R. A. Armstrong, I. Asanuma, M. J. Behrenfeld, E. T. Buitenhuis, F. Chai et al. (2009), Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J. Marine Systems, 76(1/2), 113–133.

    Article  Google Scholar 

  • Frouin, R., and B. Cherlock (1992), A technique for global monitoring of net solar irradiance at the ocean surface, Part I: Model. J. Appl. Meteorol., 31, 1056–1066.

    Article  Google Scholar 

  • Frouin, R., C. Gautier, K. Katsaros, and R. Lind (1988), A comparison of satellite and empirical formula techniques for estimating insolation over the oceans. J. Appl. Meteorol., 27, 1016.

    Article  Google Scholar 

  • Frouin, R., D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith (1989), A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface. J. Geophys. Res., 94, 9731–9742.

    Article  Google Scholar 

  • Frouin, R., B. Franz, and M. Wang (2001), Algorithm to Estimate PAR from SeaWiFS Data, Version 1.2: Documentation. NASA GSFC, available at http://oceancolor.gsfc.nasa.gov/DOCS/seawifs_par_wfigs.pdf (last accessed August 3, 2008).

  • Frouin, R., B. Franz, and P. J. Werdell (2003), The SeaWiFS PAR product. In: S. B. Hooker and E. R. Firestone (Eds.), Algorithm Updates for the Fourth SeaWiFS Data Reprocessing (NASA Technical Memorandum, 2000-206892, vol. 22). NASA-GSFC, Greenbelt, MD.

    Google Scholar 

  • Garcia-Gorriz, E., and M. E. Carr (1999), The climatological annual cycle of satellite-derived phytoplankton pigments in the Alboran Sea. Geophys. Res. Lett., 26(19), 2985–2988.

    Article  Google Scholar 

  • Gautier, C. (1995), Remote sensing of surface solar radiation flux and PAR over the ocean from satellite observations. In: M. Ikeda and F. W. Dobson (Eds.), Oceanographic Applications of Remote Sensing (pp. 271–290). CRC Press, Boca Raton, FL.

    Google Scholar 

  • Gautier, C., G. Diak, and S. Masse (1980), A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteorol., 19, 1005.

    Article  Google Scholar 

  • Glynn, P. W. (1996), Coral reef bleaching: Facts, hypotheses and implications. Global Change Biology, 2, 495–509.

    Article  Google Scholar 

  • Glynn, P. W., and L. D’Croz (1990), Experimental evidence for high temperature stress as the cause of El Niño coincident coral mortality. Coral Reefs, 8, 181–191.

    Article  Google Scholar 

  • Gomes, H. R., J. I. Goes, and T. Saino (2000). Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Cont. Shelf Res., 20(3), 313–330.

    Article  Google Scholar 

  • Gonzalez, N. M., F. E. Muller-Karger, S. C. Estrada, R. P. de los Reyes, I. V. del Rio, P. C. Perez, and I. M. Arenal (2000), Near-surface phytoplankton distribution in the western Intra-Americas Sea: The influence of El Niño and weather events. J. Geophys. Res., 105(C6), 14029–14043.

    Article  Google Scholar 

  • Gordon, H. R., G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth (2001), Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. Geophys. Res. Lett., 28(8), 1587–1590.

    Article  Google Scholar 

  • Green, E. P. (2000). Satellite and airborne sensors useful in coastal applications. In: E. P. Green, P. J. Mumby, A. J. Edwards, and C. D. Clark (Eds.), Remote Sensing Handbook for Tropical Coastal Management (pp. 41-56) UNESCO, Paris.

    Google Scholar 

  • Green, E. P., and P. J. Mumby (2000), Mapping mangroves. In: E. P. Green, P. J. Mumby, A. J. Edwards, and C. D. Clark (Eds.), Remote Sensing Handbook for Tropical Coastal Management (pp. 183–198). UNESCO, Paris.

    Google Scholar 

  • Green, E. P., P. J. Mumby, A. J. Edwards, and C. D. Clark (1996), A review of remote sensing for the assessment and management of tropical coastal resources. Coastal Management, 24, 1–40.

    Article  Google Scholar 

  • Green, E. P., C. D. Clark, and A. J. Edwards (2000a), Image classification and habitat mapping. In: E. P. Green, P. J. Mumby, A. J. Edwards, and C. D. Clark (Eds.), Remote Sensing Handbook for Tropical Coastal Management (pp. 141–154). UNESCO, Paris.

    Google Scholar 

  • Green, E. P., P. J. Mumby, A. J. Edwards, and C. D. Clark (Eds.) (2000b), Remote Sensing Handbook for Tropical Coastal Management (edited by A. J. Edwards, 316 pp.). Coastal Management Sourcebooks, UNESCO, Paris.

    Google Scholar 

  • Gregg, W. W., and K. L. Carder (1990), A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnology and Oceanography, 35, 1657–1675.

    Article  Google Scholar 

  • Hardman-Mountford, N. J., T. Hirata, K. A. Richardson, and J. Aiken (2008). An objective methodology for the classification of ecological pattern into biomes and provinces for the pelagic ocean. Rem. Sens. Environ., 112(208), 3341–3352.

    Article  Google Scholar 

  • Hemmings, J. C. P., R. M. Barciela, and M. J. Bell (2008), Ocean colour data assimilation with material conservation for improving model estimates of air–sea CO2 flux. J. Marine Res., 66, 87–126.

    Article  Google Scholar 

  • Hemmings, J. C. P., M. A. Srokosz, P. Challenor, and M. J. R. Fasham (2003). Assimilating satellite ocean colour observations into oceanic ecosystem models. Phil. Trans. Roy. Soc. Lond. A, 361(1802), 33–39.

    Article  Google Scholar 

  • Hemmings, J. C. P., M. A. Srokosz, P. Challenor, and M. J. R. Fasham (2004). Split-domain calibration of an ecosystem model using satellite ocean colour data. J. Marine Sys., 50(3/4), 141–179.

    Article  Google Scholar 

  • Henson, S. A., R. Sanders, J. T. Allen, I. S. Robinson, and L. Brown (2003), Seasonal constraints on the estimation of new production from space using temperature–nitrate relationships. Geophys. Res. Letters, 30(17), 1912, doi: 10.1029/2003GL017982.

    Article  Google Scholar 

  • Henson, S. A., I. S. Robinson, J. T. Allen, and J. J. Waniek (2006), Effect of meteorological conditions on interanual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic. Deep-Sea Res., 53, 1601–1615.

    Article  Google Scholar 

  • Herron, R. C., T. D. Leming, and J. Li (1989), Satellite-detected fronts and butterfish aggregations in the northeastern Gulf of Mexico. Cont. Shelf Res., 9(6), 569–588.

    Article  Google Scholar 

  • Hoegh-Guldberg, O. (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwater Res., 50, 839–866.

    Article  Google Scholar 

  • Holligan, P. M., M. Viollier, C. Dupouy, and J. Aiken (1983), Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel. Cont. Shelf Res., 2, 81–96.

    Article  Google Scholar 

  • Iglesias-Rodrıguez, M. D., C. Brown, S. C. Doney, J. Kleypas, D. Kolber, and Z. Kolber (2002), Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles, 16(1100), doi: 10.1029/2001GB001454.

    Article  Google Scholar 

  • Iglesias-Rodrıguez, M. D., P. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrell, S. J. Gibbs, P. von Dassow et al. (2008), Phytoplankton calcification in a high CO2 world. Science, 320, 336–340.

    Article  Google Scholar 

  • IOCCG (2006), Remote sensing of inherent optical properties: Fundamentals, tests of algorithms and applications. In: Z. P. Lee (Ed.), Reports of the International Ocean-Colour Coordinating Group (No. 5, 126 pp.). IOCCG, Dartmouth, Canada.

    Google Scholar 

  • IOCCG (2008), Why ocean colour? The societal benefits of ocean-colour technology. In: T. Platt, N. Hoepffner, V. Stuart, and C. Brown (Eds.), Reports of the International Ocean-Colour Coordinating Group (No. 7, 141 pp.). IOCCG, Dartmouth, Canada.

    Google Scholar 

  • Ishizaka, J., E. Siswanto, T. Itoh, H. Murakami, Y. Yamaguchi, N. Horimoto, T. Ishimaru, S. Hashimoto, and T. Saino (2007), Verification of vertically generalized production model and estimation of primary production in Sagami Bay. Japan. J. Oceanography, 63(3), 517–524.

    Article  Google Scholar 

  • Joint, I., and S. B. Groom (2000), Estimation of phytoplankton production from space: current status and future potential of satellite remote sensing. J. Exp. Mar. Biol. Ecol., 250, 233–255.

    Article  Google Scholar 

  • Kahru, M., and B. G. Mitchell (2000), Influence of the 1997–98 El Niño on the surface chlorophyll in the California Current. Geophys. Res. Lett., 27(18), 2937–2940.

    Article  Google Scholar 

  • Kiefer, D. A., and B. G. Mitchell (1983), A simple steady-state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnology and Oceanography, 28, 770–776.

    Article  Google Scholar 

  • Kirk, J. T. O. (1994), Light and Photosynthesis in Aquatic Ecosystems (Second Edition). Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Lasker, R., J. Peláez, and R. M. Laurs (1981), The use of satellite infrared imageryfor describing ocean processes in relation to spawning of the northern anchovy( Engraulis mordax). Rem. Sens. Environ., 11, 439–453.

    Article  Google Scholar 

  • Laurs, R. M., and J. T. Brucks (1985), Living marine resources applications. In B. Saltzman (Ed.), Satellite Oceanic Remote Sensing (pp. 419–452). Academic Press, London.

    Chapter  Google Scholar 

  • Laurs, R. M., and R. J. Lynn (1991). North Pacific albacore ecology and oceanography. In: J. A. Wetherall (Ed.), Biology, Oceanography and Fisheries of the North Pacific Transition Zone and Subarctic Frontal Zone (NOAA Technical Report NMFS 105, pp. 69–87). National Oceanic and Atmospheric Administration, Silver Springs, MD.

    Google Scholar 

  • Laurs, R. M., P. C. Fiedler, and D. R. Montgomery (1984), Albacore tuna catch distributions relative to environmental features observed from satellite. Deep-Sea Res., 31(9), 1085–1099.

    Article  Google Scholar 

  • Leonard, C. L., R. R. Bidigare, M. P. Seki, and J. J. Polovina (2001), Interannual mesoscale physical and biological variability in the North Pacific Central Gyre. Progress in Oceanography, 49, 227–244.

    Article  Google Scholar 

  • Lévy, M., Y. Lehahn, J.-M. André, L. Mémery, H. Loisel, and E. Heifetz (2005), Production regimes in the northeast Atlantic: A studybased on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll and ocean general circulation model mixed layer depth. J. Geophys. Res., 110(C07S10), doi: 10.1029/2004JC002771.

    Article  Google Scholar 

  • Lillesand, T. M., and R. W. Kiefer (1999), Remote Sensing and Image Interpretation (Fourth Edition, 736 pp.). John Wiley & Sons, New York.

    Google Scholar 

  • Longhurst, A. (1998), Ecological Geography of the Sea. Academic Press, San Diego, CA.

    Google Scholar 

  • Longhurst, A., S. Sathyendranath, T. Platt, and C. M. Caverhill (1995), An estimate of global primaryproduction in the ocean from satellite radiometer data. J. Plankton Res., 17(6), 1245–1271.

    Article  Google Scholar 

  • Lyzenga, D. R. (1981), Remotre sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int. J. Remote Sensing, 2, 71–82.

    Article  Google Scholar 

  • Manizza, M., C. LeQuéré, A. J. Watson, and E. T. Buitenhuis (2005), Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32(L05603), doi: 10.1029/2004GL020778.

    Article  Google Scholar 

  • Mather, P. M. (1999), Computer Processing of Remotely-sensed Images: An Introduction (Second Edition, 292 pp.). John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Maul, G. A., F. Williams, M. Roffer, and F. M. Souza (1984). Remotelysensed oceanographic patterns and variabilityof bluefin tuna catch in the Gulf of Mexico. Oceanol. Acta, 7(4), 469–479.

    Google Scholar 

  • McClain, C. R. (2009), A decade of satellite ocean color observations. Annu. Rev. Mar. Sci., 1, 19–42.

    Article  Google Scholar 

  • Miller, A. J., M. A. Alexander, G. J. Boer, F. Chai, K. Denman, D. J. Erickson III, R. Frouin, A. J. Gabric, E. A. Laws, M. R. Lewis et al. (2003), Potential feedbacks between Pacific Ocean ecosystems and interdecadal climate variations. Bull. Am. Meteorol. Soc., 84(5), 617–633.

    Article  Google Scholar 

  • Mitchell, B. G. (1994) Coastal zone color scanner retrospective. J. Geophys. Res., 99, 7291–7292.

    Article  Google Scholar 

  • Montgomery, D. R. (1981) Commercial applications of satellite oceanography. Oceanus, 24(3), 56–65.

    Google Scholar 

  • Montgomery, D. R., R. E. Wittenberg-Fay, and R. W. Austin (1986), The applications of satellite-derived ocean color products to commercial fishing operations. Mar. Tech. Soc. J., 20(2), 72–86.

    Google Scholar 

  • Moore, J. K., M. R. Abbott, J. G. Richman, W. O. Smith, T. J. Cowles, K. H. Coale, W. D. Gardner, and R. T. Barber (1999), SeaWiFS satellite ocean color data from the Southern Ocean. Geophys. Res. Lett., 26(10), 1465–1468.

    Article  Google Scholar 

  • Morel, A. (1991), Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Progress in Oceanography, 26, 263–306.

    Article  Google Scholar 

  • Morel, A., and J.-F. Berthon (1989), Surface pigments, algal biomass profiles and potential production of the euphotic layer: Relationships reinvestigated in view of remote sensing applications. Limnology and Oceanography, 34, 1545–1562.

    Article  Google Scholar 

  • Mumby, P. J., and A. J. Edwards (2000), Water column correction techniques. In: E. P. Green, P. J. Mumby, A. J. Edwards, and C. D. Clark (Eds.), Remote Sensing Handbook for Tropical Coastal Management (pp. 121–128). UNESCO, Paris.

    Google Scholar 

  • Mumby, P. J., and E. P. Green (2000), Mapping coral reefs and macroalgae. In: E. P. Green, P. J. Mumby, A. J. Edwards, and C. D. Clark (Eds.), Remote Sensing Handbook for Tropical Coastal Management (Chap. 14, p. 155). UNESCO, Paris.

    Google Scholar 

  • Mumby, P. J., E. P. Green, A. J. Edwards, and C. D. Clark (1997), Measurement of sea-grass standing crop using satellite and digital airborne remote sensing. Mar. Ecol. Prog. Ser., 159, 51–60.

    Article  Google Scholar 

  • Mumby, P. J., E. P. Green, A. J. Edwards, and C. D. Clark (1999), The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environmental Management, 55, 157–166.

    Article  Google Scholar 

  • Murtugudde, R. G., R. S. Signorini, J. R. Christian, A. J. Busalacchi, C. R. McClain, and J. Picaut (1999), Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–98. J. Geophys. Res., 104, 18351–18366.

    Article  Google Scholar 

  • Myers, D. G., and P. T. Hick (1990), An application of satellite-derived sea surface temperature data to the Australian fishing industry in near-real time. Int. J. Remote Sensing, 11(11), 2103–2112.

    Article  Google Scholar 

  • Nair, A., S. Sathyendranath, T. Platt, J. Morales, V. Stuart, M.-H. Forget, E. Devred, and H. Boumain (2008), Remote sensing of phytoplankton functional types. Rem. Sens. Environ., 112, 3366–3375.

    Article  Google Scholar 

  • Narain, A., R. M. Dwivedi, H. U. Solanki, B. Kumari, and N. Chaturvedi (1990), The use of NOAA-AVHRR data in fisheries exploration in the Indian EEZ. Paper presented at Proc. Sem. Remote Sensing for Marine Fisheries Studies, Beijing, China. Economic and Social Commission for Asia and the Pacific/United Nations Development Program (ESCAP/UNDP), pp. 226–232.

    Google Scholar 

  • Nayak, S., H. U. Solanki, and R. M. Dwivedi (2003), Utilization of IRS P4 ocean colour data for potential fishing zone: A cost benefit analysis. Ind. J. Mar. Sci., 32, 244–248.

    Google Scholar 

  • Njoku, E. G., T. P. Barnett, R. M. Laurs, and A. C. Vastano (1985), Advances in satellite sea surface temperature measurement and oceanographic applications. J. Geophys. Res., 90(C6), 11573–11586.

    Article  Google Scholar 

  • Pauly, D., and V. Christensen (1995), Primary production required to sustain global fisheries. Nature, 374, 255–257.

    Article  Google Scholar 

  • Pinker, R. T., and I. Laszlo (1992), Global distribution of photosynthetically active radiation as observed from satellites. J. Climate, 5, 56–65.

    Article  Google Scholar 

  • Platt, T., and S. Sathyendranath (1988). Oceanic primary production: Estimation by remote sensing at local and regional scales. Science, 241, 1613–1620.

    Article  Google Scholar 

  • Platt, T., and S. Sathyendranath (1993), Estimators of primary production for interpretation of remotely sensed data on ocean color. J. Geophys. Res., 98(C8), 14561–14576.

    Article  Google Scholar 

  • Platt, T. and S. Sathyendranath (1999), Spatial structure of pelagic ecosystem processes in the global ocean. Ecosystems, 2, 384–394.

    Article  Google Scholar 

  • Platt, T., S. Sathyendranath, C. M. Caverhill, and M. R. Lewis (1988), Ocean primary production and available light: Further algorithms for remote sensing. Deep-Sea Research, 35(6), 855–879.

    Article  Google Scholar 

  • Platt, T., P. Jahauri, and S. Sathyendranath (1992), The importance and measurement of new production. In: P. G. Falkowski and A. D. Woodhead (Eds.), Primary Productivity and Biogeochemical Cycles in the Sea (pp. 273–284). Plenum Press, New York.

    Google Scholar 

  • Platt, T., S. Sathyendranath, and A. Longhurst (1995), Remote sensing of primary production in the ocean: Promise and fulfilment. Phil. Trans. Roy. Soc. Lond. B, 348, 191–202.

    Article  Google Scholar 

  • Platt, T., C. Fuentes-Yaco, and K. T. Frank (2003), Spring algal bloom and larval fish survival. Nature, 423, 398–399.

    Article  Google Scholar 

  • Podestaá G. P., J. A. Browder, and J. J. Hoey (1993), Exploring the association between swordfish catch rates and thermal fronts on US longline grounds in the western North Atlantic. Cont. Shelf Res., 13(2/3), 253–277.

    Article  Google Scholar 

  • Polovina, J. J. (2005), Climate variation, regime shifts, and implications for sustainable fisheries. Bull. Mar. Sci., 76, 233–244.

    Google Scholar 

  • Polovina, J. J., D. R. Kobayashi, D. M. Parker, M. P. Seki, and G. H. Balazs (2000), Turtles on the edge: Movement of loggerhead turtles (Caretta caretta) along oceanic fronts, spanning longline fishing grounds in the central North Pacific, 1997–1998. Fish. Oceanogr., 9(1), 71–82.

    Article  Google Scholar 

  • Polovina, J. J., E. Howell, D. R. Kobayashi, and M. P. Seki (2001), The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography, 49, 469–483.

    Article  Google Scholar 

  • Polovina, J. J., G. H. Balazs, E. A. Howell, D. M. Parker, M. P. Seki, and P. H. Dutton (2004). Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr., 13, 36–51.

    Article  Google Scholar 

  • Polovina, J. J., E. A. Howell, and M. Abecassis (2008), Ocean’s least productive waters are expanding. Geophys. Res. Lett., 35(L03618), doi: 10.1029/2007GL031745.

    Article  Google Scholar 

  • Purkiss, S. (2005) A ‘‘reef-up’’ approach to classifying coral habitats from IKONOS imagery. IEEE Trans. Geoscience Rem. Sens., 43(6), 1375–1390.

    Article  Google Scholar 

  • Purkiss, S., J. A. M. Kenter, E. K. Oikonomou, and I. S. Robinson (2002), High resolution ground verification, cluster analysis and optical model of reef substrate coverage from Landsat TM imagery (Red Sea, Egypt). Int. J. Remote Sensing, 23(8), 1677–1698.

    Article  Google Scholar 

  • Richards, W. J., T. D. Leming, M. F. McGowan, J. T. Lamkin, and S. Kelley-Fraga (1989), Distribution of fish larvae in relation to hydrographic features of the Loop Current boundary in the Gulf of Mexico. Rapp. P.-v. Réun. Cons. Int. Explor. Mer., 191, 169–176.

    Google Scholar 

  • Richardson, A. J., and D. S. Schoeman (2004), Climate impact on plankton ecosystems in the Northeast Atlantic. Science, 305, 1609–1212.

    Article  Google Scholar 

  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407(September 21), 364–367.

    Article  Google Scholar 

  • Robblee, M. B., T. R. Barber, P. R. Carlson, Jr., M. J. Durako, J. W. Fourqurean, L. K. Muehlstein, D. Porter, L. A. Yarbro, R. T. Zieman, and J. C. Zieman (1991), Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecol. Prog. Ser., 71, 297–299.

    Article  Google Scholar 

  • Robinson, I. S. (2004) Measuring the Ocean from Space: The Principles and Methods of Satellite Oceanography (669 pp.). Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Robinson, I. S., D. Antoine, M. Darecki, P. Gorringe, L. Pettersson, K. Ruddick, R. Santoleri, H. Siegel, P. Vincent, M. R. Wernand et al. (2008), Remote Sensing of Shelf Sea Ecosystems: State of the Art and Perspectives (edited by N. Connolly, Marine Board Position Paper No. 12., 60 pp.). European Science Foundation Marine Board, Ostend, Belgium.

    Google Scholar 

  • Saichun, T., and S. Guangyu (2006), Satellite-derived primary productivity and its spatial and temporal variability in the China seas. J. Geograph. Sci., 16(4), 447–457.

    Article  Google Scholar 

  • Santos, A. M. P. (2000) Fisheries oceanography using satellite and airborne remote sensing methods: A review. Fisheries Research, 49, 1–20.

    Article  Google Scholar 

  • Santos, A. M. P., and A. F. G. Fiuáza (1992), Supporting the Portuguese fisheries with satellites. Paper presented at Proc. European International Space Year Conference 1992 on ‘‘Space in the Service of the Changing Earth’’, Munich, Germany (ESA SP-341, Part 2, pp. 663–668). European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Saraceno, M., C. Provost, A. R. Piola, J. Bava, and A. Gagliardini (2004), Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. J. Geophys. Res., 109(C05027), doi: 10.1029/2003JC002127.

    Article  Google Scholar 

  • Saraceno, M., C. Provost, and A. R. Piola (2005), On the relationship between satelliteretrieved surface temperature fronts and chlorophyll a in the western South Atlantic. J. Geophys. Res., 110(C11016), doi: 10.1029/2004JC002736.

    Article  Google Scholar 

  • Sathyendranath, S., T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis (1989), Remote sensing of oceanic primary production: Computations using a spectral model. Deep-Sea Research, 36(3), 431–453.

    Article  Google Scholar 

  • Sathyendranath, S., T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, and N. Hoepffner (1991). Estimation of new production in the ocean by compound remote sensing. Nature, 353, 129–133.

    Article  Google Scholar 

  • Sathyendranath, S., A. Longhurst, C. M. Caverhill, and T. Platt (1995), Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Research, 42(10), 1773–1802.

    Article  Google Scholar 

  • Sathyendranath, S., L. Watts, E. Devred, T. Platt, C. Caverhill, and H. Maass (2004), Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar. Ecol. Prog. Ser., 272, 59–68.

    Article  Google Scholar 

  • Schiffer, R. A., and W. B. Rossow (1983), The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Program. Bull. Am. Meteorol. Soc., 64, 779–784.

    Google Scholar 

  • Schiffer, R. A., and W. B. Rossow (1985), ISCCP global radiance data set : A new resource for climate research. Bull. Am. Meteorol. Soc., 66, 1498–1505.

    Article  Google Scholar 

  • Signorini, S. R., R. G. Murtugudde, C. R. McClain, J. R. Christian, J. Picaut, and A. J. Busalacchi (1999). Biological and physical signatures in the tropical and subtropical Atlantic. J. Geophys. Res., 104(C8), 18367–18382.

    Article  Google Scholar 

  • Solanki, H. U., R. M. Dwivedi, S. Nayak, V. S. Somvanshi, D. K. Gulati, and S. K. Pattnayak (2003), Fishery forecast using OCM chlorophyll concentration and AVHRR SST: Validation results off Gujarat coast, India. Int. J. Remote Sensing, 24, 3691–3699.

    Article  Google Scholar 

  • Subrahmanyam, B., K. Ueyoshi, and J. M. Morrison (2008), Sensitivity of the Indian Ocean circulation to phytoplankton forcing using an ocean model. Rem. Sens. Environ., 112, 1488–1496.

    Article  Google Scholar 

  • Subramaniam, A., C. W. Brown, R. R. Hood, E. J. Carpenter, and D. G. Capone (2002), Detecting Trichodesmium blooms in SeaWiFS imagery. Deep-Sea Res. II, 49, 107–121.

    Article  Google Scholar 

  • Tameishi, H., O. Honda, T. Kohguti, S. Fujita, and K. Saitoh (1992), Application of satellite imageries data to fisheries in Japan. Paper presented at Proc. European International Space Year Conference 1992 on ‘‘Space in the Service of the Changing Earth’’, Munich, Germany (ESA SP-341, Part 2, pp. 669–674). European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Thomas, A., and P. T. Strub (2001), Cross-shelf phytoplankton pigment variability in the California Current. Cont. Shelf Res., 21, 1157–1190.

    Article  Google Scholar 

  • Tyrell, T., P. M. Holligan, and C. D. Mobley (1999), Optical impacts of oceanic coccolithophore blooms. J. Geophys. Res., 104, 3223–3241.

    Article  Google Scholar 

  • Ueyama, R., and B. C. Monger (2005), Wind-induced modulation of seasonal phytoplankton blooms in the North Atlantic derived from satellite observations. Limnology and Oceanography, 50(6), 1820–1829.

    Article  Google Scholar 

  • Watts, L., S. Sathyendranath, C. Caverhill, H. Maass, T. Platt, and N. J. P. Owens (1999), Modelling new production in the northwest Indian Ocean region. Mar. Ecol. Prog. Ser., 183, 1–12.

    Article  Google Scholar 

  • Weeks, S., B. Currie, and A. Bakun (2002), Massive emissions of toxic gas in the Atlantic. Nature, 415, 493–494.

    Article  Google Scholar 

  • Wilson, C. (2003), Late summer chlorophyll blooms in the oligotrophic North Pacific Subtropical Gyre. Geophys. Res. Lett., 30(18), 1942, doi: 10.1029/2003GL017770.

    Article  Google Scholar 

  • Yamada, K., J. Ishizaka, and H. Nagata (2005), Spatial and temporal variability of satellite primary production in the Japan Sea from 1998 to 2002. J. Oceanography, 61(5), 857–869.

    Article  Google Scholar 

  • Yin, K. D., P. J. Harrison, J. Chen, W. Huang, and P. Y. Qian (1999), Red tides during spring 1998 in Hong Kong: Is El Nino responsible? Mar. Ecol. Prog. Ser., 187, 289–294.

    Article  Google Scholar 

  • Yoder, J. A., J. E. O’Reilly, A. H. Barnard, T. S. Moore, and C. M. Ruhsam (2001), Variability in coastal zone color scanner (CZCS) chlorophyll imagery of ocean margin waters off the US East Coast. Cont. Shelf Res., 21, 1191–1218.

    Article  Google Scholar 

  • Zainal, A. J. M., D. H. Dalby, and I. S. Robinson (1993), Monitoring marine ecological changes on the east coast of Bahrain with Landsat TM. Photogram. Eng. and Remote Sensing, 59, 415–421.

    Google Scholar 

  • Zainuddin, M., S.-I. Saitoh, and K. Saitoh (2004), Detection of potential fishing ground for albacore tuna using synoptic measurements of ocean color and thermal remote sensing in the northwestern North Pacific. Geophys. Res. Lett., 31(20), L20311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, I.S. (2010). Ocean biology from space. In: Discovering the Ocean from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68322-3_7

Download citation

Publish with us

Policies and ethics