Skip to main content

Neurophysiologische Diagnostik

  • Chapter
NeuroIntensiv

Auszug

Die klinische Elektroneurophysiologie umfasst die Elektroenzephalographie (EEG), evozierte Potenziale (EP), die Elektroneurographie (NLG) und Elektromyographie (EMG). Diese Untersuchungsmethoden haben vielfältige Indikationen in der Diagnostik und dem Monitoring schwer kranker Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aminoff M. J. Electrodiagnosis in clinical neurology Harcord Publishers 1999

    Google Scholar 

  2. Bischoff Ch., Dengler R., Hopf H.Ch., EMG, NLG Thieme 2003

    Google Scholar 

  3. Buchner H, Noth J, Evozierte Potenziale, Neurovegetative Diagnostik, Okulographie — Methodik und klinische Anwendungen. Thieme 2005

    Google Scholar 

  4. Guérit J.M., Fischer C., Facco E., Tinuper P., Murri L., Ronne-Engström E., Nuwer M. Standards of clinical practice of EEG and Eps in comatose and other unresponsive states Deuschl G. and Eisen A. Recommendations for the practice of clinical neurophysiology: Guidelines of the international federation of clinical neurophysiology Electroencephalography and clinical neurophysiology Supp. 52 1999

    Google Scholar 

  5. Lowitzsch K., Hopf H.Ch., Buchner H. Das EP-Buch Thieme 2000

    Google Scholar 

  6. Ludin H.P. Praktische Elektromyographie Thieme 1997

    Google Scholar 

  7. Neundörfer B. EEG-Fibel Urban & Fischer 2002

    Google Scholar 

  8. Stöhr M., Dichgans J., Buettner U. W., Hess C.W., Evozierte Potenziale Springer 2004

    Google Scholar 

  9. Stöhr M., Pfister R., Schegelmann K., Bluthardt M., Gierer S., Atlas der klinischen Elektromyographie und Neurographe Kohlhammer 1998

    Google Scholar 

  10. Stöhr M., Regna K., Einführung in die klinische Neurophysiologie Steinkopff 2002

    Google Scholar 

  11. Zschoke St., Hansen H.C. Klinische Elektroenzephalographie Springer 2002

    Google Scholar 

Literatur

  1. Alexandrov AV, Molina CA, Grotta JC, Garami Z, Ford SR, Alvarez-Sabin J, Montaner J, Saqqur M, Demchuk AM, Moye LA, Hill MD, Wojner AW. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 351(21): 2170–2178, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. Allendörfer J, Görtler M, von Reutern GM, for the Neurosonology in Acute Ischemic Stroke Study Group. Prognostic relevance of ultraearly doppler sonography in acute ischaemic stroke: a prospective multicentre study. Lancet Neurol 5(10): 835–840, 2006.

    Article  Google Scholar 

  3. Baumgartner RW, Mattle HP, Schroth G. Assessment of >=50% and <50% intracranial stenoses by transcranial color-coded duplex sonography. Stroke 30(1): 87–92, 1999.

    PubMed  CAS  Google Scholar 

  4. Bogdahn U, Becker G, Winkler J, Greiner K, Perez J, Meurers B. Transcranial colour-coded real-time sonography in adults. Stroke 21: 1680–1688, 1990.

    PubMed  CAS  Google Scholar 

  5. Brandt T, Knauth M, Wildermuth S, Winter R, von Kummer R, Sartor K, Hacke W. CT angiography and Doppler sonography for emergency assessment in acute basilar artery ischemia. Stroke 30(3): 606–612, 1999.

    PubMed  CAS  Google Scholar 

  6. Daffertshofer M, Gass A, Ringleb P, Sitzer M, Sliwka U, Els T, Sedlaczek O, Koroshetz WJ, Hennerici MG. Transcranial Low-Frequency Ultrasound-Mediated Thrombolysis in Brain Ischemia: Increased Risk of Hemorrhage With Combined Ultrasound and Tissue Plasminogen Activator. Results of a Phase II Clinical Trial. Stroke 36(7):1441–1446, 2005.

    Article  PubMed  Google Scholar 

  7. de Bray JM, Daugy J, Legrand MS, Pulci S. Acute middle cerebral artery stroke and transcranial Doppler sonography. Eur J Ultrasound 7(1): 31–36, 1998.

    Article  PubMed  Google Scholar 

  8. Demchuk AM, Christou I, Wein TH, Felberg RA, Malkoff M, Grotta JC, Alexandrov AV. Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 10(1): 1–12, 2000.

    PubMed  CAS  Google Scholar 

  9. Droste DW, Lakemeier S, Wichter T, Stypmann J, Dittrich R, Ritter M, Moeller M, Freund M, Ringelstein EB. Optimizing the technique of contrast transcranial Doppler ultrasound in the detection of right-to-left shunts. Stroke 33(9): 2211–2216, 2002.

    Article  PubMed  Google Scholar 

  10. Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 21(3): 419–424, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. Jama 282(21): 2003–2011, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Gahn G, Gerber J, Hallmeyer S, al. e. Contrast enhanced transcranial colour-coded duplex sonography in stroke patients with limited bone window. AJNR 21: 509–514, 2000.

    PubMed  CAS  Google Scholar 

  13. Gahn G, von Kummer R. Ultrasound in acute stroke: a review. Neuroradiology 43(9): 702–711, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Gerriets T, Seidel G, Fiss I, Modrau B, Kaps M. Contrast-enhanced transcranial color-coded duplex sonography: efficiency and validity. Neurology 52(6): 1133–1137, 1999.

    PubMed  CAS  Google Scholar 

  15. Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology 52(1): 45–49, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Goertler M, Baeumer M, Kross R, Blaser T, Lutze G, Jost S, Wallesch CW. Rapid decline of cerebral microemboli of arterial origin after intravenous acetylsalicylic acid. Stroke 30(1): 66–69, 1999.

    PubMed  CAS  Google Scholar 

  17. Kenton AR, Martin PJ, Abbott RJ, Moody AR. Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke. Stroke 28(8): 1601–1606, 1997.

    PubMed  CAS  Google Scholar 

  18. Klötzsch C, Janssen G, Berlit P. Transesophageal echocardiography and contrast-TCD in the detection of a patent foramen ovale: experiences with 111 patients. Neurology 44(9): 1603–1606, 1994.

    PubMed  Google Scholar 

  19. Mäurer M, Shambal S, Berg D, Woydt M, Hofmann E, Georgiadis D, Lindner A, Becker G. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplexsonography. Stroke 29: 2563–2567, 1998.

    PubMed  Google Scholar 

  20. Mariak Z, Krejza J, Swiercz M, Kordecki K, Lewko J. Accuracy of transcranial color Doppler ultrasonography in the diagnosis of middle cerebral artery spasm determined by receiver operating characteristic analysis. J Neurosurg 96(2): 323–330, 2002.

    PubMed  Google Scholar 

  21. Markus HS, Droste DW, Kaps M, Larrue V, Lees KR, Siebler M, Ringelstein EB. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation 111(17):2233–2240, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Michaeli D, Rappaport ZH. Tissue resonance analysis; a novel method for noninvasive monitoring of intracranial pressure. Technical note. J Neurosurg 96(6): 1132–1137, 2002.

    PubMed  Google Scholar 

  23. Molina CA, Ribo M, Rubiera M, Montaner J, Santamarina E, Delgado-Mederos R, Arenillas JF, Huertas R, Purroy F, Delgado P, Alvarez-Sabin J. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 37(2): 425–429, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Neuerburg-Heusler D, Hennerici M. Gefäßdiagnostik mit Ultraschall. 2. Auflage ed. Stuttgart, New York: Thieme, 1994.

    Google Scholar 

  25. Newman WD, Hollman AS, Dutton GN, Carachi R. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol 86(10): 1109–1113, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Schulte-Altedorneburg G, Droste DW, Popa V, Wohlgemuth WA, Kellermann M, Nabavi DG, Csiba L, Ringelstein EB. Visualization of the basilar artery by transcranial color-coded duplex sonography: comparison with postmortem results. Stroke 31(5): 1123–1127, 2000.

    PubMed  CAS  Google Scholar 

  27. Seidel G, Albers T, Meyer K, Wiesmann M. Perfusion harmonic imaging in acute middle cerebral artery infarction. Ultrasound Med Biol. 29(9): 1245–1251, 2003

    Article  PubMed  Google Scholar 

  28. Sliwka U, Rautenberg W, Schwartz A, Hennerici M. Multimodal ultrasound imaging of the vertebral circulation compared with intraarterial angiography. J. Neurol. 239S: 38, 1992.

    Google Scholar 

  29. Sturzenegger M, Mattle HP, Rivoir A, Baumgartner RW. Ultrasound findings in carotid artery dissection: analysis of 43 patients. Neurology 45(4): 691–698, 1995.

    PubMed  CAS  Google Scholar 

  30. Wijdicks EF. The diagnosis of brain death. N Engl J Med 344(16): 1215–1221, 2001.

    Article  PubMed  CAS  Google Scholar 

Literatur

  1. Aschoff, A. and T. Steiner (1999). Messung von Hirndruck und Perfusionsdruck. Neurologische Intensivmedizin. S. Schwab, D. Krieger, W. Müllges, G. Hahmann and W. Hacke. Heidelberg, New-York, Springer-Verlag: 261–303.

    Google Scholar 

  2. Asgeirsson, B., P. O. Grände, et al. (1994). »A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation«. Intensive Care Med 20: 260–267.

    Article  PubMed  CAS  Google Scholar 

  3. Brawanski, A. and M. R. Gaab (1981). Intracranial pressure gradients in the presence of various intracranial space-occupying lesions. Advances in Neurosurgery. Berlin, Springer. 9: 355–362.

    Google Scholar 

  4. Bullock, M. R. and R. M. Chesnut (2000). Guidelines for the management of severe traumatic brain injury. New York, Brain Trauma Foundation and American Association of Neurological Surgeons.

    Google Scholar 

  5. Cremer, O. L., G. W. van Dijk, et al. (2005). »Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury.« Crit Care Med 33: 2207–2213.

    Article  PubMed  Google Scholar 

  6. Czosnyka, M. and J. D. Pickard (2004). »Monitoring and interpretation of intracranial pressure«. J Neurol Neurosurg Psychiatry 75: 813–821.

    Article  PubMed  CAS  Google Scholar 

  7. Grände, P. O. (2006). »The »Lund Concept« for the treatment of severe head trauma — physiological principles and clinical application«. Intensive Care Med 32: 1475–1484.

    Article  PubMed  Google Scholar 

  8. Holloway, K. L., T. Barnes, et al. (1996). »Ventriculostomy Infections: The Effect of Monitoring Duration and Catheter Exchange in 584 Patients«. J Neurosurg 85: 419–424.

    PubMed  CAS  Google Scholar 

  9. Lundberg, N. (1960). »Continuous recording and control of ventricular fluid pressure in neurosurgical practice.« Acta Psychiatr Scand 36(Suppl. 149): 1–193.

    CAS  Google Scholar 

  10. Pfeifer, G. (1980). »Über die gegenseitige Beeinflussung von intrakraniellem Druck und Körrperkreislauf unter Einbeziehung der Aktivität vegetativer Nerven. Medizinische Habilitationsschrift, Universität Bonn.«.

    Google Scholar 

  11. Piek, J. (2006). Intrakranieller Druck — zerebraler Perfusionsdruck. Grundlagen Neurochirurgischer Intensivmedizin. J. Piek and A. Unterberg. München-Wien-New York, Zuckschwerdt: 38–50.

    Google Scholar 

  12. Piek, J., P. Plewe, et al. (1988). »Intrahemispheric gradients of brain tissue pressure in patients with brain tumours«. Acta Neurochir (Wien) 93: 129–135.

    Article  CAS  Google Scholar 

  13. Richard, K. E. (1978). »Long-term measuring of ventricular CSF pressure with tumors of the posterior fossa.« Adv. Neurosurg 5: 179–187.

    Google Scholar 

  14. Rosner, M. J., S. D. Rosner, et al. (1995). »Cerebral perfusion pressure: management protocol and clinical results.« J Neurosurgery 83: 949–962.

    CAS  Google Scholar 

  15. Schwab, S., A. Aschoff, et al. (1996). »The value of intracrainial pressure monitoring in acute hemispheric stroke.« Neurology 47: 393–98.

    PubMed  CAS  Google Scholar 

  16. Steiner, L. A. and P. J. D. Andrews (2006). »Monitoring the injured brain: ICP and CBF.« Br J Anaesth 97: 26–38.

    Article  PubMed  CAS  Google Scholar 

  17. Unterberg, A., K. Kiening, et al. (1993). »Long-term observations of intracranial pressure after severe head injury. The phenomenon of secondary rise of intracranial pressure.» Neurosurgery 32: 17.

    Article  PubMed  CAS  Google Scholar 

Literatur

  1. Beppu, T., K. Kamada, et al. (2002). »Change of oxygen pressure in glioblastoma tissue under various conditions.« J Neurooncol 58(1): 47–52.

    Article  PubMed  Google Scholar 

  2. Brain Trauma Foundation, et al. (2007). »Guidelines for the Management of Severe Traumatic Brain Injury, 3rd Edition. J Neurotrauma 24: S1–106.

    Article  Google Scholar 

  3. Brawanski, A., R. Faltermeier, et al. (2002). »Comparison of near-infrared spectroscopy and tissue p(O2) time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage.« J Cereb Blood Flow Metab 22(5): 605–11.

    Article  PubMed  Google Scholar 

  4. Charbel, F. T., X. Du, et al. (2000). »Brain tissue PO(2), PCO(2), and pH during cerebral vasospasm.« Surg Neurol 54(6): 432–7; discussion 438.

    Article  PubMed  CAS  Google Scholar 

  5. Clark jr., J. C. (1956). »Monitor and control of blood and tissue oxygen tension.« Transaction of the Society of Art internal Organs 2: 41–48.

    Google Scholar 

  6. Dings, J., J. Meixensberger, et al. (1998). »Clinical experience with 118 brain tissue oxygen partial pressure catheter probes.« Neurosurgery 43(5): 1082–95.

    Article  PubMed  CAS  Google Scholar 

  7. Doppenberg, E. M., A. Zauner, et al. (1998). »Determination of the ischemic threshold for brain oxygen tension.« Acta Neurochir Suppl (Wien) 71: 166–9.

    PubMed  CAS  Google Scholar 

  8. Hartl, R., T. F. Bardt, et al. (1997). »Mannitol decreases ICP but does not improve brain-tissue pO2 in severely head-injured patients with intracranial hypertension.« Acta Neurochir Suppl (Wien) 70: 40–2.

    PubMed  CAS  Google Scholar 

  9. Hoelper, B. M., E. Hofmann, et al. (2003). »Transluminal balloon angioplasty improves brain tissue oxygenation and metabolism in severe vasospasm after aneurysmal subarachnoid hemorrhage: case report.« Neurosurgery 52(4): 970–4; discussion 974–6.

    Article  PubMed  Google Scholar 

  10. Kett-White, R., P. J. Hutchinson, et al. (2002). »Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes.« Neurosurgery 50(6): 1213–21; discussion 1221–2.

    Article  PubMed  Google Scholar 

  11. Kiening, K. L., A. W. Unterberg, et al. (1996). »Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue pO2 vs. jugular vein oxygen saturation.» Journal of Neurosurgery 85: 751–757.

    PubMed  CAS  Google Scholar 

  12. Leniger-Follert, E., D. W. Lübbers, et al. (1975). »Regulation of local tissue pO2 of the brain cortex at different arterial O2-pressures«. Pflügers Archiv 359: 81–95.

    Article  PubMed  CAS  Google Scholar 

  13. Longhi, L., V. Valeriani, et al. (2002). »Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions.« Acta Neurochir Suppl 81: 315–7.

    PubMed  CAS  Google Scholar 

  14. Raabe, A., J. Beck, et al. (2005). »Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage«. J Neurosurg 103:974–81.

    PubMed  Google Scholar 

  15. Reinprecht, A., M. Greher, et al. (2003). »Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: Effects on cerebral tissue oxygenation and intracranial pressure«. Crit Care Med 31(6): 1831–8.

    Article  PubMed  Google Scholar 

  16. Sakowitz, O., J. Stover, et al. (2007). »Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients.« J Trauma 62:292–8.

    PubMed  CAS  Google Scholar 

  17. Soehle, M., M. Jaeger, et al. (2003). »Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage.« Neurol Res 25(4): 411–7.

    Article  PubMed  Google Scholar 

  18. Steiner, T., J. Pilz, et al. (2001). »Multimodal monitoring in middle cerebral artery stroke.« Stroke 32: 2500–2506.

    Article  PubMed  CAS  Google Scholar 

  19. Stiefel, M., A. Spiotta et al. (2005). »Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring.« J Neurosurg 103:805–11.

    PubMed  Google Scholar 

  20. Unterberg, A. W., K. L. Kiening, et al. (1997). »Multimodal monitoring in patients with head injury: evaluation of the Effects of treatment on cerebral oxygenation.« J Trauma 42(5 Suppl): S32–7.

    PubMed  CAS  Google Scholar 

  21. Tolias C., M. Reinert et al. (2004). »Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study.« J Neurosurg 101:435–44.

    PubMed  Google Scholar 

  22. van den Brink, W. A., I. K. Haitsma, et al. (1998). »Brain parenchyma/ pO2 catheter interface: a histopathological study in the rat.« J Neurotrauma 15(10): 813–24.

    PubMed  Google Scholar 

  23. van Santbrink, H., A. I. Maas, et al. (1996). »Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury.« Neurosurgery 38(1): 21–31.

    Article  PubMed  Google Scholar 

  24. Zauner, A., R. Bullock, et al. (1995). »Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain.« Neurosurgery 37(6): 1168–1177.

    Article  PubMed  CAS  Google Scholar 

  25. Zauner, A., E. M. Doppenberg, et al. (1997). »Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries.« Neurosurgery 41(5): 1082–91; discussion 1091–3.

    Article  PubMed  CAS  Google Scholar 

Literatur

  1. P. G. Al Rawi, P. Smielewski and P.J. Kirkpatrick, Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head, Stroke 32 (2001) 2492–2500.

    Article  Google Scholar 

  2. C. E. Elwell, A practical guide to near infrared spectroscopy, Hamamatsu Photonics KK, 1995.

    Google Scholar 

  3. F. F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198 (1977) 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  4. E. Keller, H. Ishihara, A. Nadler, P. Niederer, B. Seifert, Y. Yonekawa and K. Frei, Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection, J Neurosci Methods 117 (2002) 23–31.

    Article  PubMed  Google Scholar 

  5. E. Keller, A. Nadler, H. Alkhadi, S. Kollias, Y. Yonekawa and P. Niederer, Noninvasive measurement of regional cerebral blood flow and regional cerebral bood volume by near infrared spectroscopy and indocynaine green dye dilution, Neuroimage 20 (2003) 828–839.

    Article  PubMed  Google Scholar 

  6. E. Keller, M. Wolf, M. Martin and Y. Yonekawa, Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyaningreen dye dilution and near infrared spectroscopy, J of Neurosurg Anesthesiol 13 (2001) 43–48.

    Article  CAS  Google Scholar 

  7. P.J. Kirkpatrick, J. Lam, P. Al Rawi, P. Smielewski and M. Czosnyka, Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain, J Neurosurg 89 (1998) 389–394.

    PubMed  CAS  Google Scholar 

  8. P.J. Kirkpatrick, P. Smielewski, M. Czosnyka, D.K. Menon and J.D. Pickard, Near-infrared spectroscopy use in patients with head injury, J Neurosurg 83 (1995) 963–970.

    PubMed  CAS  Google Scholar 

  9. W.M. Kuebler, A. Sckell, O. Habler, M. Kleen, G.E. Kuhnle, M. Welte, K. Messmer and A.E. Goetz, Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green, J Cereb Blood Flow Metab 18 (1998) 445–456.

    Article  PubMed  CAS  Google Scholar 

  10. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer and J. Steinbrink, Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain, Neuroimage 31 (2006) 600–608.

    Article  PubMed  CAS  Google Scholar 

  11. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer and H. Obrig, Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance, Neuroimage 24 (2005) 426–435.

    Article  PubMed  CAS  Google Scholar 

  12. H. Nagashima, H. Okudera, S. Kobayashi and T. Iwashita, Monitoring of cerebral hemodynamics using near-infrared spectroscopy during local intraarterial thrombolysis: case report, Surg Neurol 49 (1998) 420–424.

    Article  PubMed  CAS  Google Scholar 

  13. G. Nollert, R.A. Jonas and B. Reichart, Optimizing cerebral oxygenation during cardiac surgery: a review of experimental and clinical investigations with near infrared spectrophotometry., Thorac Cardiovasc Surg 48 (2000) 247–253.

    Article  PubMed  CAS  Google Scholar 

  14. H. Obrig and A. Villringer, Beyond the visible—imaging the human brain with light., J Cereb Blood Flow Metab 23 (2003) 1–18.

    Article  PubMed  Google Scholar 

  15. I. Roberts, P. Fallon, F.J. Kirkham, A. Lloyd Thomas, C. Cooper, R. Maynard, M. Elliot and A.D. Edwards, Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green, Lancet 342 (1993) 1425.

    Article  PubMed  CAS  Google Scholar 

  16. P. Smielewski, M. Czosnyka, J.D. Pickard and P. Kirkpatrick, Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease, Stroke 28 (1997) 331–338.

    PubMed  CAS  Google Scholar 

  17. J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig and W.M. Kuebler, Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass, J Thorac Cardiovasc Surg 132 (2006) 1172–1178.

    Article  PubMed  Google Scholar 

  18. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer and H. Rinneberg, Determining changes in NIR absorption using a layered model of the human head, Phys Med Biol 46 (2001) 879–896.

    Article  PubMed  CAS  Google Scholar 

  19. S. Suzuki, S. Takasaki, T. Ozaki and Y. Kobayashi, A tissue oxygenation monitor using NIR spatially resolved spectroscopy., Proc. SPIE 3597 (1999) 582–592.

    Article  CAS  Google Scholar 

  20. C. Terborg, S. Bramer, S. Harscher, M. Simon, O.W. Witte. Bedside Assessment of Cerebral Perfusion Reductions in Patients with Acute Ischemic Stroke by Near-Infrared Spectroscopy and Indocyanine Green. J Neurol Neurosurg Psychiatry 2003; 75: 38–42.

    Google Scholar 

  21. C. Terborg, T. Birkner, B. Schack, C. Weiller and J. Rother, Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device, Cerebrovasc Dis 16 (2003) 36–41.

    Article  PubMed  CAS  Google Scholar 

  22. C. Terborg, F. Gora, C. Weiller and J. Rother, Reduced vasomotor reactivity in cerebral microangiopathy: a study with near-infrared spectroscopy and transcranial Doppler sonography, Stroke 31 (2000) 924–929.

    PubMed  CAS  Google Scholar 

  23. B.P. Wagner, S. Gertsch, R.A. Amann and J. Pfenninger, Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow, Intensive Care Med 29 (2003) 196–200.

    PubMed  Google Scholar 

Literatur

  1. Berger C, Schabitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S. (2002) Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 33(2):519–24.

    Article  PubMed  CAS  Google Scholar 

  2. Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 89(4):507–18.

    PubMed  CAS  Google Scholar 

  3. Dohmen C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, Neveling M, Brinker G, Heiss WD (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34(9):2152–8. Epub 2003 Jul 24

    Article  PubMed  Google Scholar 

  4. Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, Langstrom B, Hillered L, Persson L (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16(4):637–44.

    Article  PubMed  CAS  Google Scholar 

  5. Hutchinson PJ, al-Rawi PG, O’Connell MT, Gupta AK, Maskell LB, Hutchinson DB, Pickard JD, Kirkpatrick PJ (2000) On-line monitoring of substrate delivery and brain metabolism in head injury. Acta Neurochir Suppl 76:431–5.

    PubMed  CAS  Google Scholar 

  6. Nilsson OG, Brandt L, Ungerstedt U, Saveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45(5):1176–84;discussion 1184–5.

    Article  PubMed  CAS  Google Scholar 

  7. Parkin M, Hopwood S, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab. Mar;25(3):402–13

    Article  PubMed  CAS  Google Scholar 

  8. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, Hillered L (1996) Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 84(4):606–16.

    PubMed  CAS  Google Scholar 

  9. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002 May;30(5):1062–70.

    Article  PubMed  Google Scholar 

  10. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, Unterberg A. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke. 2003 Jun;34(6):1382–8. Epub 2003 May 15.

    Article  PubMed  CAS  Google Scholar 

Literatur

  1. Axel L: Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137:679–686, 1980

    PubMed  CAS  Google Scholar 

  2. Gur D, Yonas H, Jackson DL, et al: Measurement of cerebral blood flow during xenon inhalation as measured by the microspheres method. Stroke 16:871–874, 1985

    PubMed  CAS  Google Scholar 

  3. Martin NA, Patwardhan RV, Alexander MJ, et al: Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. Journal of Neurosurgery 87:9–19, 1997

    PubMed  CAS  Google Scholar 

  4. Mazziotta JC, Huang SC, Phelps ME, et al: A noninvasive positron computed tomography technique using oxygen-15—labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab 5:70–78, 1985

    PubMed  CAS  Google Scholar 

  5. Miller JD: Normal and increased intracranial pressure, in JD M (ed): Northfield’s Surgery of the Central Nervous System, ed 2. Edinburgh: Blackwell, 1987, p chap 2.

    Google Scholar 

  6. Obrist WD, Wilkinson WE: Regional cerebral blood flow measurement in humans by xenon-133 clearance. Cerebrovascular and Brain Metabolism Reviews 2:283–327, 1990

    PubMed  CAS  Google Scholar 

  7. Tomandl BF, Klotz E, Handschu R, et al: Comprehensive Imaging of Ischemic Stroke with Multisection CT. Radiographics 23:565–592, 2003

    Article  PubMed  Google Scholar 

  8. Vajkoczy P, Horn P, Thome C, et al: Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 98:1227–1234, 2003

    Article  PubMed  Google Scholar 

  9. Yonas H, Gur D, Good BC, et al: Stable xenon CT blood flow mapping for evaluation of patients with extracranial-intracranial bypass surgery. J Neurosurg 62:324–333, 1985

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Buchner, H. et al. (2008). Neurophysiologische Diagnostik. In: Schwab, S., Schellinger, P., Werner, C., Unterberg, A., Hacke, W. (eds) NeuroIntensiv. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68317-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68317-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23051-9

  • Online ISBN: 978-3-540-68317-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics