Skip to main content

Semidefinite Relaxations for Integer Programming

  • Chapter
  • First Online:

Abstract

We survey some recent developments in the area of semidefinite optimization applied to integer programming. After recalling some generic modeling techniques to obtain semidefinite relaxations for NP-hard problems, we look at the theoretical power of semidefinite optimization in the context of the Max-Cut and the Coloring Problem. In the second part, we consider algorithmic questions related to semidefinite optimization, and point to some recent ideas to handle large scale problems. The survey is concluded with some more advanced modeling techniques, based on matrix relaxations leading to copositive matrices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.M. Anstreicher and H. Wolkowicz, On Lagrangian relaxation of quadratic matrix constraints, SIAM Journal on Matrix Analysis 22 (2000) 41–55.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Arora, E. Chlamtac, and M. Charikar, New approximation guarantee for chromatic number, Proceedings of the 38th STOC, Seattle, USA, 2006, pp. 215–224.

    Google Scholar 

  3. D. Avis and J. Umemoto, Stronger linear programming relaxations for max-cut, Mathematical Programming 97 (2003) 451–469.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0-1 programs, Mathematical Programming 58 (1993) 295–324.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Barahona, M. Jünger, and G. Reinelt, Experiments in quadratic 0-1 programming, Mathematical Programming 44 (1989) 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization, MPS-SIAM Series on Optimization, 2001.

    Google Scholar 

  7. S. Berkowitz, Extrema of elementary symmetric polynomials of the eigenvalues of the matrix P*KP+L, Linear Algebra Appl. 8 (1974) 273–280.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs, Mathematical Programming 120 (2009) 479–495.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Chlamtac, Non-local analysis of sdp based approximation algorithms, Ph.D. thesis, Princeton University, USA, 2009.

    Google Scholar 

  10. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large scale traveling salesman problem, Journal of the Operations Research Society of America 2 (1954) 393–410.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. de Klerk and D.V. Pasechnik, Approximatin of the stability number of a graph via copositive programming, SIAM Journal on Optimization 12 (2002) 875–892.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Deza, V.P. Grishukhin, and M. Laurent, The hypermetric cone is polyhedral, Combinatorica 13 (1993) 397–411.

    Article  MathSciNet  MATH  Google Scholar 

  13. W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs, IBM Journal of Research and Developement 17 (1973) 420–425.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.J. Duffin, Infinite programs, Ann. Math. Stud. 38 (1956) 157–170.

    MathSciNet  MATH  Google Scholar 

  15. I. Dukanovic and F. Rendl, Semidefinite programming relaxations for graph coloring and maximal clique problems, Mathematical Programming 109 (2007) 345–365.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.V. Pasechnik, E. de Klerk, and J.P. Warners, On approximate graph colouring and MAX k- CUT algorithms based on the V-function, Journal of Combinatorial Optimization 8 (2004) 267–294.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Fischer, G. Gruber, F. Rendl, and R. Sotirov, Computational experience with a bundle method for semidefinite cutten plane relaxations of max-cut and equipartition, Mathematical Programming 105 (2006) 451–469.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Frieze and M. Jerrum, Improved approximation algorithms for MAX k-cut and MAX BISECTION, Algorithmica 18 (1997) 67–81.

    Article  MathSciNet  MATH  Google Scholar 

  19. M.X. Goemans, Semidefinite programming in combinatorial optimization, Mathematical Programming 79 (1997) 143–162.

    MathSciNet  MATH  Google Scholar 

  20. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995) 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Gvozdenović and M. Laurent, Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization, SIAM Journal on Optimization 19 (2008) 592–615.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Gvozdenović and M. Laurent, The operatorΨ for the chromatic number of a graph, SIAM Journal on Optimization 19 (2008) 572–591.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.W. Hadley, F. Rendl, and H. Wolkowicz, A new lower bound via projection for the quadratic assignment problem, Mathematics of Operations Research 17 (1992) 727–739.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Halperin and U. Zwick, A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems, Lecture notes in Computer Science 2081, IPCO 2001, Springer Berlin, 2001, pp. 210–225.

    Google Scholar 

  25. P.L. Hammer, Some network flow problems solved with pseudo-Boolean programming, Operations Research 13 (1965) 388–399.

    Article  MathSciNet  Google Scholar 

  26. C. Helmberg, Fixing variables in semidefinite relaxations, SIAM J. Matrix Anal. Appl. 21 (2000) 952–969.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Helmberg, Semidefinite programming, European Journal of Operational Research 137 (2002) 461–482.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Helmberg, Numerical validation of SBmethod, Mathematical Programming 95 (2003) 381–406.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Helmberg, K.C. Kiwiel, and F. Rendl, Incorporating inequality constraints in the spectral bundle method, Integer Programming and combinatorial optimization (E.A. Boyd R.E. Bixby and R.Z. Rios-Mercado, eds.), Springer Lecture Notes in Computer Science 1412, 1998, pp. 423–435.

    Google Scholar 

  30. C. Helmberg and F. Oustry, Bundle methods to minimize the maximum eigenvalue function, Handbook of semidefinite programming: theory, algorithms and applications (R. Saigal H. Wolkowicz and L. Vandenberghe, eds.), Kluwer, 2000, pp. 307–337.

    Google Scholar 

  31. C. Helmberg, S. Poljak, F. Rendl, and H. Wolkowicz, Combining semidefinite and polyhedral relaxations for integer programs, Integer Programming and combinatorial optimization (E. Balas and J. Clausen, eds.), Springer Lecture Notes in Computer Science 920, 1995, pp. 124–134.

    Google Scholar 

  32. C. Helmberg and F. Rendl, Solving quadratic (0,1)-problems by semidefinite programming and cutting planes, Mathematical Programming 82 (1998) 291–315.

    MathSciNet  MATH  Google Scholar 

  33. C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM Journal on Optimization 10 (2000) 673–696.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz, An interior-point method for semidefinite programming, SIAM Journal on Optimization 6 (1996) 342–361.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms (vol. 1 and 2), Springer, 1993.

    Google Scholar 

  36. A.J. Hoffman and H.W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. Journal 20 (1953) 37–39.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Jibetean and M. Laurent, Semidefinite approximations for global unconstrained polynomial optimization, SIAM Journal on Optimization 16 (2005) 490–514.

    Article  MathSciNet  MATH  Google Scholar 

  38. D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon, Optimization by simulated annealing: An experimental evaluation. I: Graph partitioning, Operations Research 37 (1989) 865–892.

    Article  MATH  Google Scholar 

  39. D. Karger, R.Motwani, and M. Sudan, Approximate graph colouring by semidefinite programming, Journal of the ACM 45 (1998) 246–265.

    Article  MathSciNet  MATH  Google Scholar 

  40. S.E. Karisch and F. Rendl, Semidefinite programming and graph equipartition, Fields Institute Communications 18 (1998) 77–95.

    MathSciNet  MATH  Google Scholar 

  41. B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System techn. Journal 49 (1970) 291–307.

    Article  MATH  Google Scholar 

  42. S. Khanna, N. Linial, and S. Safra, On the hardness of approximating the chromatic number, Combinatorica 20 (2000) 393–415.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices, SIAM Journal on Optimization 7 (1997) 86–125.

    Article  MathSciNet  MATH  Google Scholar 

  44. J.B. Lasserre, A sum of squares approximation of nonnegative polynomials, SIAM Journal Optimization 16 (2006) 751–765.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Laurent, S. Poljak, and F. Rendl, Connections between semidefinite relaxations of the maxcut and stable set problems, Mathematical Programming 77 (1997) 225–246.

    MathSciNet  MATH  Google Scholar 

  46. M. Laurent and F. Rendl, Semidefinite programming and integer programming, Discrete Optimization (K. Aardal, G.L. Nemhauser, and R.Weismantel, eds.), Elsevier, 2005, pp. 393–514.

    Google Scholar 

  47. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.), The traveling salesman problem, a guided tour of combinatorial optimization, Wiley, Chicester, 1985.

    MATH  Google Scholar 

  48. C. Lemaréchal, An extension of davidon methods to nondifferentiable problems, Mathematical Programming Study 3 (1975) 95–109.

    Article  MATH  Google Scholar 

  49. C. Lemaréchal, Nonsmooth optimization and descent methods, Tech. report, International Institute for Applied Systems Analysis, 1978.

    Google Scholar 

  50. A. Lisser and F. Rendl, Graph partitioning using linear and semidefinite programming, Mathematical Programming 95 (2002) 91–101.

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Lovász, On the shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979) 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  52. L. Lovász, Semidefinite programs and combinatorial optimization, Recent advances in algorithms and combinatorics (B.A. Reed and C.L. Sales, eds.), CMS books in Mathematics, Springer, 2003, pp. 137–194.

    Google Scholar 

  53. L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM Journal on Optimization 1 (1991) 166–190.

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, Proceedings of the 25th ACM STOC, 1993, pp. 286–293.

    Google Scholar 

  55. M.Marcus, Rearrangement and extremal results for Hermitian matrices, Linear Algebra Appl. 11 (1975) 95–104.

    Article  MathSciNet  MATH  Google Scholar 

  56. R.J. McEliece, E.R. Rodemich, and H.C. Rumsey Jr., The lovasz bound and some generalizations, Journal of combinatorics and System Sciences 3 (1978) 134–152.

    MathSciNet  MATH  Google Scholar 

  57. R.D.C. Monteiro, Primal-dual path-following algorithms for semidefinite programming, SIAM Journal on Optmization 7 (1997) 663–678.

    Article  MathSciNet  MATH  Google Scholar 

  58. T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of turan, Canadian Journal of Mathematics 17 (1965) 533–540.

    Article  MathSciNet  MATH  Google Scholar 

  59. K.G. Murty and S.N. Kabadi, Some np-complete problems in quadratic and nonlinear programming, Mathematical Programming 39 (1987) 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization, Tech. report, CORE, 1997.

    Google Scholar 

  61. Y. Nesterov and A.S. Nemirovski, Interior point polynomial algorithms in convex programming, SIAM Publications, SIAM, Philadelphia, USA, 1994.

    Book  Google Scholar 

  62. M. Padberg, The quadric Boolean polytope: some characteristics, facets and relatives, Mathematical Programming 45 (1989) 139–172.

    Article  MathSciNet  MATH  Google Scholar 

  63. P. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. thesis, California Institute of Technology, USA, 2000.

    Google Scholar 

  64. J. Povh and F. Rendl, Approximating non-convex quadratic programs by semidefinite and copositive programming, Proceedings of the 11th international conference on operational research (L. Neralic V. Boljuncic and K. Soric, eds.), Croation Operations Research Society, 2008, pp. 35–45.

    Google Scholar 

  65. F. Rendl and H. Wolkowicz, Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem, Mathematical Programming 53 (1992) 63–78.

    Article  MathSciNet  MATH  Google Scholar 

  66. F. Rendl and H. Wolkowicz, A projection technique for partitioning the nodes of a graph, Annals of Operations Research 58 (1995) 155–179.

    Article  MathSciNet  MATH  Google Scholar 

  67. H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM Journal Optimization 2 (1992) 121–152.

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Schrijver, A comparison of the delsarte and lovasz bounds, IEEE Transactions on Information Theory IT-25 (1979) 425–429.

    Article  MathSciNet  MATH  Google Scholar 

  69. H.D. Sherali and W.P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM Journal on Discrete Mathematics 3 (1990) 411–430.

    Article  MathSciNet  MATH  Google Scholar 

  70. H.D. Sherali and W.P. Adams, A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems, Discrete Applied Mathematics 52 (1994) 83–106.

    Article  MathSciNet  MATH  Google Scholar 

  71. C. De Simone, The cut polytope and the Boolean quadric polytope, Discrete Mathematics 79 (1990) 71–75.

    Article  MathSciNet  MATH  Google Scholar 

  72. J. von Neumann, Some matrix inequalities and metrization of matrix space (1937), John von Neumann: Collected Works, Vol 4, MacMillan, 1962, pp. 205–219.

    Google Scholar 

  73. A. Widgerson, Improving the performance guarantee for approximate graph colouring, Journal of the ACM 30 (1983) 729–735.

    Article  Google Scholar 

  74. H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of semidefinite programming, Kluwer, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Rendl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rendl, F. (2010). Semidefinite Relaxations for Integer Programming. In: Jünger, M., et al. 50 Years of Integer Programming 1958-2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68279-0_18

Download citation

Publish with us

Policies and ethics