Skip to main content

Nonlinear Integer Programming

  • Chapter
  • First Online:

Abstract

Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms.We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4ti2 team, 4ti2 – a software package for algebraic, geometric and combinatorial problems on linear spaces, Available at http://www.4ti2.de.

  2. K. Abhishek, S. Leyffer, and J.T. Linderoth, Filmint: An outer-approximation-based solver for nonlinear mixed integer programs, Preprint ANL/MCS-P1374-0906, 2006.

    Google Scholar 

  3. C.S. Adjiman, Global optimization techniques for process systems engineering, Ph.D. thesis, Princeton University, June 1998.

    Google Scholar 

  4. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows: Theory, algorithms, and applications, Prentice-Hall, Inc., New Jersey, 1993.

    MATH  Google Scholar 

  5. S. Aktürk, A. Atamtürk, and S. Gürel, A strong conic quadratic reformulation for machinejob assignment with controllable processing times, Operations Research Letters 37 (2009) 187–191.

    Article  MathSciNet  MATH  Google Scholar 

  6. F.A. Al-Khayyal and J.E. Falk, Jointly constrained biconvex programming, Mathematics of Operations Research 8 (1983) 273–286.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Anstreicher and S. Burer, Computable representations for convex hulls of low-dimensional quadratic forms, Technical report, Department ofManagement Sciences, University of Iowa, 2007.

    Google Scholar 

  8. E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, MSRR No. 330, Carnegie Mellon University, Pittsburgh, 1974.

    Google Scholar 

  9. E. Balas, Nonconvex quadratic programming via generalized polars, SIAM Journal on Applied Mathematics 28 (1975) 335–349.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, Discrete Applied Mathematics 89 (1998) 3–44.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Bank, J. Heintz, T. Krick, R. Mandel, and P. Solernó, Une borne optimale pour la programmation entiére quasi-convexe, Bull. Soc. math. France 121 (1993) 299–314.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Bank, J. Heintz, T. Krick, R. Mandel, and P. Solernó, A geometrical bound for integer programming with polynomial constraints, Fundamentals of Computation Theory, Lecture Notes In Computer Science 529, Springer, 1991, pp. 121–125.

    Google Scholar 

  13. A.I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Mathematics of Operations Research 19 (1994) 769–779.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.I. Barvinok and J.E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New Perspectives in Algebraic Combinatorics (L.J. Billera, A. Björner, C. Greene, R.E. Simion, and R.P. Stanley eds.), Math. Sci. Res. Inst. Publ., Vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.

    Google Scholar 

  15. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, Branching and bounds tightening techniques for non-convex MINLP, IBM Research Report RC24620, 2008.

    Google Scholar 

  16. A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: Analysis, algorithms, and engineering applications, MPS-SIAM Series on Optimization, SIAM, Philadelphia, USA, 2001.

    Book  MATH  Google Scholar 

  17. Y. Berstein, J. Lee, H.Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weismantel, and H. Wynn, Nonlinear matroid optimization and experimental design, SIAM Journal on Discrete Mathematics 22 (2008) 901–919.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Berstein and S. Onn, Nonlinear bipartite matching, Discrete Optimization 5 (2008) 53–65.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Berstein, J. Lee, S. Onn, and R. Weismantel, Nonlinear optimization for matroid intersection and extensions, IBM Research Report RC24610, 2008.

    Google Scholar 

  20. D. Bertsimas and R.Weismantel, Optimization over integers, Dynamic Ideas, Belmont, Ma., 2005.

    Google Scholar 

  21. Biq-Mac Solver - Binary quadratic and Max cut Solver, biqmac.uni-klu.ac.at, 2006.

    Google Scholar 

  22. P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter, An algorithmic framework for convex mixed integer nonlinear programs, Discrete Optimization 5 (2008) 186–204.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, A feasibility pump for mixed integer nonlinear programs, Mathematical Programming 119 (2009) 331–352.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Bonami and J. Lee, Bonmin users’ manual, Technical report, June 2006.

    Google Scholar 

  25. P. Bonami and M.A. Lejeune, An exact solution approach for integer constrained portfolio optimization problems under stochastic constraints, Operations Research 57 (2009) 650–670.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Bonami, J. Forrest, J. Lee, and A. Wächter, Rapid development of an MINLP solver with COIN-OR, Optima 75 (2007) 1–5.

    Google Scholar 

  27. P. Bonami and J.P.M. Gonc¸alves, Primal heuristics for mixed integer nonlinear programs, IBM Research Report RC24639, 2008.

    Google Scholar 

  28. Bonmin, neos.mcs.anl.gov/neos/solvers/minco:Bonmin/AMPL.html.

    Google Scholar 

  29. Bonmin, projects.coin-or.org/Bonmin, v. 0.99.

    Google Scholar 

  30. E. Boros and P.L. Hammer, Pseudo-Boolean optimization, Discrete Applied Mathematics 123 (2002) 155–225.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Brion, Points entiers dans les polyédres convexes, Ann. Sci. ´Ecole Norm. Sup. 21 (1988) 653–663.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997) 797–833.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Buchheim and G. Rinaldi, Efficient reduction of polynomial zero-one optimization to the quadratic case, SIAM Journal on Optimization 18 (2007) 1398–1413.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Burer and D. Vandenbussche, A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations, Mathematical Programming 113 (2008) 259–282.

    Article  MathSciNet  MATH  Google Scholar 

  35. R.E. Burkard, E. C¸ ela, and L. Pitsoulis, The quadratic assignment problem, Handbook of Combinatorial Optimization (Dordrecht), Computer-aided chemical engineering, Kluwer Academic Publishers, 1998, pp. 241–339.

    Google Scholar 

  36. S. Ceria and J. Soares, Convex programming for disjunctive convex optimization, Mathematical Programming 86 (1999) 595–614.

    Article  MathSciNet  MATH  Google Scholar 

  37. M.T. Çezik and G. Iyengar, Cuts for mixed 0-1 conic programming, Mathematical Programming 104 (2005) 179–202.

    Article  MathSciNet  MATH  Google Scholar 

  38. M.D. Choi, T.Y. Lam, and B. Reznick, Sums of squares of real polynomials, Proceedings of symposia in pure mathematics 58 (1995) 103–126.

    MathSciNet  MATH  Google Scholar 

  39. W.J. Cook, M.E. Hartmann, R. Kannan, and C. McDiarmid, On integer points in polyhedra, Combinatorica 12 (1992) 27–37.

    Article  MathSciNet  MATH  Google Scholar 

  40. GAMS Development Corp., DICOPT, www.gams.com/dd/docs/solvers/dicopt_OnlinePDF.pdf.

  41. J.A. De Loera and S. Onn, The complexity of three-way statistical tables, SIAM Journal of Computing 33 (2004) 819–836.

    Article  MathSciNet  MATH  Google Scholar 

  42. J.A. De Loera and S. Onn, All linear and integer programs are slim 3-way transportation programs, SIAM Journal of Optimization 17 (2006) 806–821.

    Article  MathSciNet  MATH  Google Scholar 

  43. J.A. De Loera and S. Onn, Markov bases of three-way tables are arbitrarily complicated, Journal of Symbolic Computation 41 (2006) 173–181.

    Article  MathSciNet  MATH  Google Scholar 

  44. J.A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel, FPTAS for mixed-integer polynomial optimization with a fixed number of variables, 17th ACM-SIAM Symposium on Discrete Algorithms, 2006, pp. 743–748.

    Google Scholar 

  45. J.A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel, Integer polynomial optimization in fixed dimension, Mathematics of Operations Research 31 (2006) 147–153.

    Article  MathSciNet  MATH  Google Scholar 

  46. J.A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel, FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension, Mathematical Programming 118 (2008) 273–290.

    Article  MathSciNet  MATH  Google Scholar 

  47. J.A. De Loera, R. Hemmecke, S. Onn, and R. Weismantel, N-fold integer programming, Discrete Optimization 5 (2008), 231–241.

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Drewes and S. Ulbrich, Mixed integer second order cone programming, IMA Hot Topics Workshop, Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications, November 17–21, 2008.

    Google Scholar 

  49. M.A. Duran and I.E. Grossmann, An outer-approximation algorithm for a class of mixedinteger nonlinear programs, Mathematical Programming 36 (1986) 307–339.

    Article  MathSciNet  MATH  Google Scholar 

  50. M.A. Duran and I.E. Grossmann, Erratum: “An outer-approximation algorithm for a class of mixed-integer nonlinear programs” [Mathematical Programming 36 (1986) 307–339], Mathematical Programming 39 (1987) 337.

    Google Scholar 

  51. FilMINT, www-neos.mcs.anl.gov/neos/solvers/minco:FilMINT/AMPL.html.

    Google Scholar 

  52. A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0-1 mixed integer programs, Mathematical Programmming 106 (2006) 225–236.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Frangioni and C. Gentile, A computational comparison of reformulations of the perspective relaxation: SOCP vs. cutting planes, Operations Research Letters 37 (2009) 206–210.

    Article  MathSciNet  MATH  Google Scholar 

  54. M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NPcompleteness, W.H. Freeman and Company, New York, NY, 1979.

    MATH  Google Scholar 

  55. A.M. Geoffrion, Generalized Benders decomposition, J. Optimization Theory Appl. 10 (1972) 237–260.

    Article  MathSciNet  MATH  Google Scholar 

  56. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995) 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Goldfarb, S.C. Liu, and S.Y.Wang, A logarithmic barrier function algorithm for quadratically constrained convex quadratic programming, SIAM Journal on Optimization 1 (1991) 252–267.

    Article  MathSciNet  MATH  Google Scholar 

  58. R.E. Gomory, An algorithm for integer solutions to linear programs, Princeton IBM Mathematics Research Project, Technical Report No. 1, Princeton University, November 17, 1958.

    Google Scholar 

  59. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the American Mathematical Society 64 (1958) 275–278.

    Article  MathSciNet  MATH  Google Scholar 

  60. J.E. Graver, On the foundations of linear and integer linear programming I, Mathematical Programming 8 (1975) 207–226.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization, Springer, 1988.

    Google Scholar 

  62. O. Günlük and J. Linderoth, Perspective relaxation of mixed integer nonlinear programs with indicator variables, Integer Programming and Combinatorial Optimization 2008 – Bertinoro, Italy (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science 5035, Springer, 2008, pp. 1–16.

    Google Scholar 

  63. O. Günlük and J. Linderoth, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Optimization Technical Report, ISyE Department, University of Wisconsin-Madison, June 20, 2008.

    Google Scholar 

  64. O.K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlinear integer programming, Management Sci. 31 (1985) 1533–1546.

    Article  MathSciNet  MATH  Google Scholar 

  65. M.E. Hartmann, Cutting planes and the complexity of the integer hull, Phd thesis, Cornell University, Department of Operations Research and Industrial Engineering, Ithaca, NY, 1989.

    Google Scholar 

  66. J. Håstad, Some optimal inapproximability results, Proceedings of the 29th Symposium on the Theory of Computing (STOC), ACM, 1997, pp. 1–10.

    Google Scholar 

  67. S. Heinz, Complexity of integer quasiconvex polynomial optimization, Journal of Complexity 21 (2005) 543–556.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Hemmecke, On the positive sum property and the computation of Graver test sets, Mathematical Programming 96 (2003) 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  69. R. Hemmecke,M. Köppe, and R.Weismantel, Oracle-polynomial time convex mixed-integer minimization, Manuscript, 2008.

    Google Scholar 

  70. R. Hemmecke, S. Onn, and R. Weismantel, A polynomial oracle-time algorithm for convex integer minimization, Manuscript, 2008.

    Google Scholar 

  71. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms ii: Advanced theory and bundle methods., Grundlehren der Mathematischen Wissenschaften 306, Springer, 1993.

    Google Scholar 

  72. S. Hoşten and S. Sullivant, A finiteness theorem for Markov bases of hierarchical models, Journal of Combinatorial Theory Ser. A 114 (2007) 311–321.

    Article  MathSciNet  MATH  Google Scholar 

  73. Ilog-Cplex, www.ilog.com/products/cplex, v. 10.1.

  74. M. Jach, D. Michaels, and R. Weismantel, The convex envelope of (n-1)-convex functions, SIAM Journal on Optimization 19 (2008), 1451–1466.

    Article  MathSciNet  MATH  Google Scholar 

  75. T. Jacobi and A. Prestel, Distinguished representations of strictly positive polynomials, Journal für die Reine und Angewandte Mathematik 532 (2001) 223–235.

    MathSciNet  MATH  Google Scholar 

  76. R.G. Jeroslow, There cannot be any algorithm for integer programming with quadratic constraints, Operations Research 21 (1973) 221–224.

    Article  MathSciNet  MATH  Google Scholar 

  77. J.P. Jones, Universal diophantine equation, Journal of Symbolic Logic 47 (1982) 403–410.

    Article  MathSciNet  Google Scholar 

  78. J.E. Kelley, Jr., The cutting-plane method for solving convex programs, Journal of the Society for Industrial and Applied Mathematics 8 (1960) 703–712.

    Article  MathSciNet  MATH  Google Scholar 

  79. L.G. Khachiyan, Convexity and complexity in polynomial programming, Proceedings of the International Congress of Mathematicians, August 16–24, 1983, Warszawa (New York) (Zbigniew Ciesielski and Czesław Olech, eds.), North-Holland, 1984, pp. 1569–1577.

    Google Scholar 

  80. L.G. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets., Discrete and Computational Geometry 23 (2000) 207–224.

    Article  MathSciNet  MATH  Google Scholar 

  81. M. Köppe, A primal Barvinok algorithm based on irrational decompositions, SIAM Journal on Discrete Mathematics 21 (2007) 220–236.

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Köppe and S. Verdoolaege, Computing parametric rational generating functions with a primal Barvinok algorithm, The Electronic Journal of Combinatorics 15 (2008) 1–19, #R16.

    Article  MathSciNet  MATH  Google Scholar 

  83. J.B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM Journal on Optimization 11 (2001) 796–817.

    Article  MathSciNet  MATH  Google Scholar 

  84. M. Laurent, A comparison of the Sherali–Adams, Lovász–Schrijver and Lasserre relaxations for 0-1 programming, Mathematics of Operations Research 28 (2003) 470–496.

    Article  MathSciNet  MATH  Google Scholar 

  85. J. Lee, In situ column generation for a cutting-stock problem, Computers & Operations Research 34 (2007) 2345–2358.

    Article  MATH  Google Scholar 

  86. J. Lee, S. Onn, and R. Weismantel, Nonlinear optimization over a weighted independence system, IBM Research Report RC24513, 2008.

    Google Scholar 

  87. J. Lee, S. Onn, and R. Weismantel, On test sets for nonlinear integer maximization, Operations Research Letters 36 (2008) 439–443.

    Article  MathSciNet  MATH  Google Scholar 

  88. H.W. Lenstra, Integer programming with a fixed number of variables, Mathematics of Operations Research 8 (1983) 538–548.

    Article  MathSciNet  MATH  Google Scholar 

  89. S. Leyffer, User manual for MINLP BB, Technical report, University of Dundee, UK, March 1999.

    Google Scholar 

  90. L. Liberti, Comparison of convex relaxations for monomials of odd degree, Optimization and Optimal Control (I. Tseveendorj, P.M. Pardalos, and R. Enkhbat, eds.), World Scientific, 2003.

    Google Scholar 

  91. L. Liberti and C.C. Pantelides, Convex envelopes of monomials of odd degree, Journal of Global Optimization 25 (2003) 157–168.

    Article  MathSciNet  MATH  Google Scholar 

  92. J. Linderoth, A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs, Mathematical Programming 103 (2005) 251–282.

    Article  MathSciNet  MATH  Google Scholar 

  93. M. Sousa Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone programming, Linear Algebra Appl. 284 (1998) 193–228, ILAS Symposium on Fast Algorithms for Control, Signals and Image Processing (Winnipeg, MB, 1997).

    Google Scholar 

  94. LOQO, www.princeton.edu/∼rvdb, v. 4.05.

  95. L. Lovász and H.E. Scarf, The generalized basis reduction algorithm, Mathematics of Operations Research 17 (1992) 751–764.

    Article  MathSciNet  MATH  Google Scholar 

  96. Y.V. Matiyasevich, Enumerable sets are diophantine, Doklady Akademii Nauk SSSR 191 (1970) 279–282, (Russian); English translation, SovietMathematics Doklady 11 (1970) 354–357.

    Google Scholar 

  97. Y.V. Matiyasevich, Hilbert’s tenth problem, The MIT Press, Cambridge, MA, USA, 1993.

    MATH  Google Scholar 

  98. G.P.McCormick, Computability of global solutions to factorable nonconvex programs: Part i — convex underestimating problems, Mathematical Programming 10 (1976) 146–175.

    Article  MATH  Google Scholar 

  99. C.A. Meyer and C.A. Floudas, Trilinear monomials with mixed sign domains: Facets of the convex and concave envelopes, Journal of Global Optimization 29 (2004) 125–155.

    Article  MathSciNet  MATH  Google Scholar 

  100. MOSEK, www.mosek.com, v. 5.0.

  101. K. Mulmuley, U.V. Vazirani, and V.V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7 (1987) 105–113.

    Article  MathSciNet  MATH  Google Scholar 

  102. S. Onn and U.G. Rothblum, Convex combinatorial optimization, Disc. Comp. Geom. 32 (2004) 549–566.

    Article  MathSciNet  MATH  Google Scholar 

  103. C.H. Papadimitriou and M. Yanakakis, The complexity of restricted spanning tree problems, Journal of the Association for Computing Machinery 29 (1982) 285–309.

    Article  MathSciNet  MATH  Google Scholar 

  104. P.M. Pardalos, F. Rendl, and H. Wolkowicz, The quadratic assignment problem: A survey and recent developments., Quadratic Assignment and Related Problems (P.M. Pardalos and H. Wolkowicz, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 16, American Mathematical Society, DIMACS Workshop May 20–21, 1993 1994, pp. 1–42.

    Google Scholar 

  105. P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Mathematical Programming 96 (2003) 293–320.

    Article  MathSciNet  MATH  Google Scholar 

  106. R. Pörn, K.-M. Björk, and T. Westerlund, Global solution of optimization problems with signomial parts, Discrete Optimization 5 (2008) 108–120.

    Article  MathSciNet  MATH  Google Scholar 

  107. M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal 42 (1993) 969–984.

    Article  MathSciNet  MATH  Google Scholar 

  108. I. Quesada and I.E. Grossmann, An LP/NLP based branch and bound algorithm for convex MINLP optimization problems, Computers & Chemical Engineering 16 (1992) 937–947.

    Article  Google Scholar 

  109. F. Rendl, G. Rinaldi, and A. Wiegele, A branch and bound algorithm for max-cut based on combining semidefinite and polyhedral relaxations, Integer Programming and Combinatorial Optimization 2007 – Ithaca, New York (M. Fischetti and D.P. Williamson, eds.), Lecture Notes in Computer Science 4513, Springer, 2007, pp. 295–309.

    Google Scholar 

  110. F. Rendl, G. Rinaldi, and A. Wiegele, Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations, Technical report, Alpen-Adria-Universität Klagenfurt, Inst. f. Mathematik, 2008.

    Google Scholar 

  111. J. Renegar, On the computational complexity and geometry of the first-order theory of the reals. part III: Quantifier elimination, Journal of Symbolic Computation 13 (1992) 329–352.

    Article  MathSciNet  MATH  Google Scholar 

  112. J. Renegar, On the computational complexity of approximating solutions for real algebraic formulae, SIAM Journal on Computing 21 (1992) 1008–1025.

    Article  MathSciNet  MATH  Google Scholar 

  113. N.V. Sahinidis, BARON: A general purpose global optimization software package, Journal of Global Optimization 8 (1996) 201–205.

    Article  MathSciNet  MATH  Google Scholar 

  114. F. Santos and B. Sturmfels, Higher Lawrence configurations, Journal of Combinatorial Theory Ser. A 103 (2003) 151–164.

    Article  MathSciNet  MATH  Google Scholar 

  115. A. Saxena, P. Bonami, and J. Lee, Disjunctive cuts for non-convex mixed integer quadratically constrained programs, Integer Programming and Combinatorial Optimization 2008 – Bertinoro, Italy (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science 5035, Springer, 2008, pp. 17–33.

    Google Scholar 

  116. A. Saxena, P. Bonami, and J. Lee, Convex relaxations of non-convex mixed integer quadratically constrained programs: Extended formulations, IBM Research Report RC24621, 2008.

    Google Scholar 

  117. A. Saxena, P. Bonami, and J. Lee, Convex relaxations of non-convex mixed integer quadratically constrained programs: Projected formulations, IBM Research Report RC24695, 2008.

    Google Scholar 

  118. SDPT3, www.math.nus.edu.sg/∼mattohkc/sdpt3.html, v. 4.0 (beta).

  119. A. Sebö, Hilbert bases, Caratheodory’s Theorem and combinatorial optimization, Proceedings of the IPCO conference, Waterloo, Canada, 1990, pp. 431–455.

    Google Scholar 

  120. SeDuMi, sedumi.mcmaster.ca, v. 1.1.

    Google Scholar 

  121. N.Z. Shor, An approach to obtaining global extremums in polynomial mathematical programming, Kibernetika 52 (1987) 102–106.

    Google Scholar 

  122. E.M.B. Smith, On the optimal design of continuous processes, Ph.D. thesis, Imperial College of Science, Technology and Medicine, University of London, Oct. 1996.

    Google Scholar 

  123. E.M.B. Smith and C.C. Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Computers & Chemical Engineering 23 (1999) 457–478.

    Article  Google Scholar 

  124. R.A. Stubbs and S. Mehrotra, A branch-and-cut method for 0-1 mixed convex programming, Mathematical Programming 86 (1999) 515–532.

    Article  MathSciNet  MATH  Google Scholar 

  125. B. Sturmfels, Gröbner bases and convex polytopes, American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  126. S.P. Tarasov and L.G. Khachiyan, Bounds of solutions and algorithmic complexity of systems of convex diophantine inequalities, Soviet Math. Doklady 22 (1980) 700–704.

    MATH  Google Scholar 

  127. M. Tawarmalani and N. Sahinidis, Convex extensions and envelopes of semi-continuous functions, Mathematical Programming 93 (2002) 247–263.

    Article  MathSciNet  MATH  Google Scholar 

  128. M. Tawarmalani and N.V. Sahinidis, Convexification and global optimization in continuous and mixed-integer nonlinear programming: Theory, algorithms, software and applications, Nonconvex Optimization and Its Applications, vol. 65, Kluwer Academic Publishers, Dordrecht, 2002.

    Google Scholar 

  129. M. Tawarmalani and N.V. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and computational study, Mathematical Programming 99 (2004) 563–591.

    Article  MathSciNet  MATH  Google Scholar 

  130. M. Tawarmalani and N.V. Sahinidis, Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques, Journal of Global Optimization 20 (2001) 137–158.

    Article  MathSciNet  MATH  Google Scholar 

  131. R.R. Thomas, Algebraic methods in integer programming, Encyclopedia of Optimization (C. Floudas and P. Pardalos, eds.), Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  132. D. Vandenbussche and G.L. Nemhauser, A branch-and-cut algorithm for nonconvex quadratic programs with box constraints, Mathematical Programming 102 (2005) 559–575.

    Article  MathSciNet  MATH  Google Scholar 

  133. D. Vandenbussche and G.L. Nemhauser, A polyhedral study of nonconvex quadratic programs with box constraints, Mathematical Programming 102 (2005) 531–557.

    Article  MathSciNet  MATH  Google Scholar 

  134. T. Westerlund and K. Lundqvist, Alpha-ECP, version 5.101: An interactive MINLP-solver based on the extended cutting plane method, Technical Report 01-178-A, Process Design Laboratory at Abo Akademi University, Updated version of 2005-10-21.

    Google Scholar 

  135. T.Westerlund and F. Pettersson, An extended cutting plane method for solving convexMINLP problems, Computers and Chemical Engineering 19(Suppl.) (1995) S131–S136.

    Article  Google Scholar 

  136. T. Westerlund and R. Pörn, Solving pseudo-convex mixed integer optimization problems by cutting plane techniques, Optimization and Engineering 3 (2002) 253–280.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Hemmecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hemmecke, R., Köppe, M., Lee, J., Weismantel, R. (2010). Nonlinear Integer Programming. In: Jünger, M., et al. 50 Years of Integer Programming 1958-2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68279-0_15

Download citation

Publish with us

Policies and ethics