Skip to main content

Integer Programming and Algorithmic Geometry of Numbers

A tutorial

  • Chapter
  • First Online:
50 Years of Integer Programming 1958-2008

Abstract

This chapter surveys a selection of results from the interplay of integer programming and the geometry of numbers. Apart from being a survey, the text is also intended as an entry point into the field. I therefore added exercises at the end of each section to invite the reader to delve deeper into the presented material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, Reading, 1974.

    Google Scholar 

  2. M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions, Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-98) (New York), ACM Press, 1998, pp. 10–19.

    Google Scholar 

  3. M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the shortest lattice vector problem, Proceedings of the thirty-third annual ACM symposium on Theory of computing, ACM Press, 2001, pp. 601–610.

    Google Scholar 

  4. M. Ajtai, R. Kumar, and D. Sivakumar, Sampling short lattice vectors and the closest lattice vector problem, Proceedings of the 17th IEEE Annual Conference on Computational Complexity (Montreal, Canada), 2002, pp. 53–67.

    Google Scholar 

  5. W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in Rn. II. Application of K-convexity, Discrete Comput. Geom. 16 (1996) 305–311.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Bárány, R. Howe, and L. Lovász, On integer points in polyhedra: A lower bound, Combinatorica 12 (1992) 135–142.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Barvinok and K. Woods, Short rational generating functions for lattice point problems, Journal of the American Mathematical Society 16 (2003) 957–979.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Mathematics of Operations Research 19 (1994) 769–779.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Blömer, Closest vectors, successive minima, and dual HKZ-bases of lattices, Automata, Languages and Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000, Proceedings (U. Montanari, J. D. P. Rolim, and E. Welzl, eds.), Lecture Notes in Computer Science 1853, Springer, 2000, pp. 248–259.

    Google Scholar 

  10. J. Blömer and S. Naewe, Sampling methods for shortest vectors, closest vectors and successive minima, Proceedings of the 34th International Colloquium on Automata, Languages and Programming, ICALP 2007 (L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, eds.), Lecture Notes in Computer Science 4596, Springer, 2007, pp. 65–77.

    Google Scholar 

  11. I. Borosh and L.B. Treybig, Bounds on positive integral solutions of linear diophantine equations, Proceedings of the American Mathematical Society 55 (1976) 299–304.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.-Y. Cai and A.P. Nerurkar, Approximating the svp to within a factor (1+1/dim ε) is NP-hard under randomized reductions, Proceedings of the 38th IEEE Conference on Computational Complexity (Pittsburgh), IEEE Computer Society Press, 1998, pp. 46–55.

    Google Scholar 

  13. K.L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension is small, Journal of the Association for Computing Machinery 42 (1995) 488–499.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Cook, M.E. Hartmann, R. Kannan, and C. McDiarmid, On integer points in polyhedra, Combinatorica 12 (1992) 27–37.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Dinur, Approximating SVP∞to within almost-polynomial factors is NP-hard, Theoretical Computer Science 285 (2002) 55–71.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Dyer, A. Frieze, and R. Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, Journal of the ACM 38 (1991) 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Edmonds, Systems of distinct representatives and linear algebra, Journal of Reseach of the National Bureau of Standards 71B (1967) 241–245.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Eisenbrand, Fast integer programming in fixed dimension, Proceedings of the 11th Annual European Symposium on Algorithms, ESA’ 2003 (G. Di Battista and U. Zwick, eds.), Lecture Notes in Computer Science 2832, Springer, 2003, pp. 196–207.

    Google Scholar 

  19. F. Eisenbrand and S. Laue, A linear algorithm for integer programming in the plane, Mathematical Programming 102 (2005) 249–259.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Eisenbrand and G. Rote, Fast reduction of ternary quadratic forms, Cryptography and Lattices Conference, CALC 2001 (J. Silverman, ed.), Lecture Notes in Computer Science 2146, Springer, 2001, pp. 32–44.

    Google Scholar 

  21. F. Eisenbrand and G. Shmonin, Parametric integer programming in fixed dimension, Mathematics of Operations Research (2008), to appear. 14 Integer Programming and Algorithmic Geometry of Numbers 557

    Google Scholar 

  22. P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a lattice, Technical ReportMI-UvA-81-04,Mathematical Institute, University of Amsterdam, Amsterdam, 1981.

    Google Scholar 

  23. X.G. Fang and G. Havas, On the worst-case complexity of integer Gaussian elimination, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI) (New York), ACM, 1997, pp. 28–31.

    Google Scholar 

  24. S.D. Feit, A fast algorithm for the two-variable integer programming problem, Journal of the Association for Computing Machinery 31 (1984) 99–113.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Frank and É. Tardos, An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica 7 (1987) 49–65.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Fürer, Faster integer multiplication, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC 2007 (D.S. Johnson and U. Feige, eds.), ACM, 2007, pp. 57–66.

    Google Scholar 

  27. N. Gama and P.Q. Nguyen, Finding short lattice vectors within mordell’s inequality, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, STOC 2008 (R.E. Ladner and C. Dwork, eds.), ACM, 2008, pp. 207–216.

    Google Scholar 

  28. B. Gärtner, A subexponential algorithm for abstract optimization problems, SIAM Journal on Computing 24 (1995) 1018–1035.

    Article  MathSciNet  MATH  Google Scholar 

  29. C.F. Gauß, Disquisitiones arithmeticae, Gerh. Fleischer Iun., 1801.

    Google Scholar 

  30. O. Goldreich and S. Goldwasser, On the limits of non-approximability of lattice problems, Proceedings of the 30th Annual ACM Symposium on Theory of Computing (New York), ACM Press, 1998, pp. 1–9.

    Google Scholar 

  31. M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, Vol. 2, Springer, 1988.

    Google Scholar 

  32. M. Grötschel, L. Lovász, and A. Schrijver, Geometric methods in combinatorial optimization, Progress in Combinatorial Optimization (W.R. Pulleyblank, ed.), Academic Press, Toronto, 1984, pp. 167–183.

    Chapter  MATH  Google Scholar 

  33. G. Hanrot and D. Stehlé, Improved analysis of Kannan’s shortest lattice vector algorithm (extended abstract), Advances in cryptology—CRYPTO 2007, Lecture Notes in Comput. Science 4622, Springer, Berlin, 2007, pp. 170–186.

    MATH  Google Scholar 

  34. I. Haviv and O. Regev, Tensor-based hardness of the shortest vector problem to within almost polynomial factors, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 469–477.

    MATH  Google Scholar 

  35. A.C. Hayes and D.G. Larman, The vertices of the knapsack polytope, Discrete Applied Mathematics 6 (1983) 135–138.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced lattice bases, Theoretical Computer Science 41 (1985) 125–139.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Hermite, Extraits de lettres deM. Ch. Hermite àM. Jacobi sur différents objets de la théorie des nombres, Journal für die reine und angewandte Mathematik 40 (1850).

    Google Scholar 

  38. D.S. Hirschberg and C.K. Wong, A polynomial algorithm for the knapsack problem in two variables, Journal of the Association for Computing Machinery 23 (1976) 147–154.

    Article  MathSciNet  MATH  Google Scholar 

  39. F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204.

    Google Scholar 

  40. E. Kaltofen, On the complexity of finding short vectors in integer lattices, Computer Algebra: Proceedings of EUROCAL ’1983 (J. VanHulzen, ed.), Lecture Notes in Computer Science 162, Springer, 1983, pp. 236–244.

    Google Scholar 

  41. N. Kanamaru, T. Nishizeki, and T. Asano, Efficient enumeration of grid points in a convex polygon and its application to integer programming, International Journal of Computational Geometry & Applications 4 (1994) 69–85.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Kannan, Improved algorithms for integer programming and related problems, Proceedings of the 15th Annual ACM Symposium on Theory of Computing (New York), ACM Press, 1983, pp. 193–206.

    Google Scholar 

  43. R. Kannan, Minkowski’s convex body theorem and integer programming, Mathematics of Operations Research 12 (1987) 415–440.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Kannan, Minkowski’s convex body theorem and integer programming, Mathematics of Operations Research 12 (1987) 415–440.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992) 161–177.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Kannan, A polynomial algorithm for the two-variable integer programming problem, Journal of the Association for Computing Machinery 27 (1980) 118–122.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM Journal on Computing 8 (1979) 499–507.

    Article  MathSciNet  MATH  Google Scholar 

  48. L.G. Khachiyan and M.J. Todd, On the complexity of approximating the maximal inscribed ellipsoid for a polytope, Mathematical Programming 61 (1993) 137–159.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Khinchine, A quantitative formulation of Kronecker’s theory of approximation (in russian), Izvestiya Akademii Nauk SSR Seriya Matematika 12 (1948) 113–122.

    Google Scholar 

  50. S. Khot, Hardness of approximating the shortest vector problem in high l pnorms, Journal of Computer and System Sciences 72 (2006) 206–219.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Knuth, The art of computer programming, Vol. 2, Addison-Wesley, 1969.

    Google Scholar 

  52. M. Köppe, S. Verdoolaege, and K. Woods, An implementation of the barvinok–woods integer projection algorithm, Technical report, Katholieke Universiteit Leuven, 2008.

    Google Scholar 

  53. M. Köppe and S. Verdoolaege, Computing parametric rational generating functions with a primal Barvinok algorithm, Electronic Journal of Combinatorics 15:#R16 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Lagarias, H. Lenstra, and C. Schnorr, Korkin-zolotarev bases and successive minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990) 333–348.

    Article  MathSciNet  MATH  Google Scholar 

  55. A.K. Lenstra, H.W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen 261 (1982) 515–534.

    Article  MathSciNet  MATH  Google Scholar 

  56. H.W. Lenstra, Integer programming with a fixed number of variables, Mathematics of Operations Research 8 (1983) 538–548.

    Article  MathSciNet  MATH  Google Scholar 

  57. H.W. Lenstra, Jr., Lattices, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 2008, pp. 127–181.

    Google Scholar 

  58. L. Lovász, An algorithmic theory of numbers, graphs and convexity, SIAM, 1986.

    Google Scholar 

  59. J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear programming, Algorithmica 16 (1996) 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Micciancio, The shortest vector in a lattice is hard to approximate to within some constant, Proceedings of the 39th Annual Symposium on Foundations of Computer Science (Los Alamitos, CA), IEEE Computer Society, 1998, pp. 92–98.

    Google Scholar 

  61. H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1896.

    MATH  Google Scholar 

  62. Y.E. Nesterov and A.S. Nemirovski, Self–concordant functions and polynomial–time methods in convex programming, Technical report, Central Economic and Mathematical Institute, USSR Academy of Science, Moscow, USSR, 1989.

    Google Scholar 

  63. P.Q. Nguyen and D. Stehlé, Floating-point LLL revisited, Proceedings of the 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 05) (R. Cramer, ed.), Lecture Notes in Computer Science 3494, Springer, 2005, pp. 215–233.

    Google Scholar 

  64. P.Q. Nguyen and D. Stehlé, Floating-point LLL revisited, Advances in cryptology—EUROCRYPT 2005, Lecture Notes in Computer Science 3494, Springer, 2005, pp. 215–233.

    Google Scholar 

  65. I. Niven, H.S. Zuckerman, and H.L. Montgomery, An introduction to the theory of numbers, fifth edition, Wiley, 1991.

    Google Scholar 

  66. X. Pujol and D. Stehlé, Rigorous and efficient short lattice vectors enumeration, 14th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2008) 2008, pp. 390–405.

    Google Scholar 

  67. J.L. Ramírez-Alfonsín, Complexity of the Frobenius problem, Combinatorica 16 (1996) 143– 147.

    Article  MathSciNet  MATH  Google Scholar 

  68. O. Regev, Lattices in computer science, Lecture notes, Tel Aviv University, 2004, http: //www.cs.tau.ac.il/∼odedr/teaching/lattices_fall_2004/index.html. 14 Integer Programming and Algorithmic Geometry of Numbers 559

  69. O. Regev and R. Rosen, Lattice problems and norm embeddings, STOC’06: Proceedings of the 38th Annual ACMSymposium on Theory of Computing, ACM, New York, 2006, pp. 447– 456.

    Google Scholar 

  70. H.E. Scarf, Production sets with indivisibilities. Part I: generalities, Econometrica 49 (1981) 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  71. H.E. Scarf, Production sets with indivisibilities. Part II: The case of two activities, Econometrica 49 (1981) 395–423.

    Article  MathSciNet  MATH  Google Scholar 

  72. C.-P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoretical Computer Science 53 (1987) 201–224.

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica 1 (1971) 139–144.

    Article  MATH  Google Scholar 

  74. A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7 (1971) 281–292.

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Schrijver, Theory of linear and integer programming, John Wiley & Sons, 1986.

    Google Scholar 

  76. V.N. Shevchenko, On the number of extreme points in integer programming, Kibernetika (1981) 133–134 (Russian).

    Google Scholar 

  77. L.J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer Science 3 (1976) 1– 22.

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Storjohann, Faster algorithms for integer lattice reduction, Technical Report 249, Department of Computer Science, ETH Zürich, 1996.

    Google Scholar 

  79. É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Operations Research 34 (1986) 250–256.

    Article  MathSciNet  MATH  Google Scholar 

  80. J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University Press, 1999.

    Google Scholar 

  81. J. von zur Gathen and M. Sieveking, Weitere zum Erfüllungsproblem polynomial äquivalente kombinatorische Aufgaben, Komplexität von Entscheidungsproblemen: ein Seminar (E. Specker and V. Strassen, eds.), Lecture Notes in Computer Science 43, Springer, 1976, pp. 49–71.

    Google Scholar 

  82. E. Welzl, Smallest enclosing disks (balls and ellipsoids), New results and new trends in computer science (Graz, 1991), Lecture Notes in Computer Science 555, Springer, Berlin, 1991, pp. 359–370.

    Google Scholar 

  83. C.Wrathall, Complete sets and the polynomial-time hierarchy, Theoretical Computer Science 3 (1976) 23–33.

    Article  MathSciNet  MATH  Google Scholar 

  84. L.Y. Zamanskij and V.D. Cherkasskij, A formula for determining the number of integral points on a straight line and its application, Ehkon.Mat.Metody 20 (1984) 1132–1138, (in Russian).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Eisenbrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eisenbrand, F. (2010). Integer Programming and Algorithmic Geometry of Numbers. In: Jünger, M., et al. 50 Years of Integer Programming 1958-2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68279-0_14

Download citation

Publish with us

Policies and ethics