Skip to main content

Fifty-Plus Years of Combinatorial Integer Programming

  • Chapter
  • First Online:
50 Years of Integer Programming 1958-2008

Abstract

Throughout the history of integer programming, the field has been guided by research into solution approaches to combinatorial problems. We discuss some of the highlights and defining moments of this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM Journal on Optimization 5 (1995) 13–51.

    Article  MathSciNet  MATH  Google Scholar 

  2. American Mathematical Society, The Sixth Symposium in Applied Mathematics, Bulletin of the American Mathematical Society 59 (1953) 513–514.

    Article  MathSciNet  Google Scholar 

  3. American Mathematical Society, The Summer Meeting in Kingston, Bulletin of the American Mathematical Society 59 (1953) 515–568.

    Article  MathSciNet  Google Scholar 

  4. E. Balas and M.W. Padberg, On the set-covering problem, Operations Research 20 (1972) 1152–1161.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Balas and M.W. Padberg, On the set-covering problem: II. An algorithm for set partitioning, Operations Research 23 (1975) 74–90.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bellman, An introduction to the theory of dynamic programming, Research Report R-245, RAND Corporation, Santa Monica, California, USA, 1953.

    Google Scholar 

  7. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, New Jersey, USA, 1957.

    MATH  Google Scholar 

  8. R. Bellman, Combinatorial processes and dynamic programming, Combinatorial Analysis (R. Bellman and M. Hall, Jr., eds.), American Mathematical Society, Providence, Rhode Island, USA, 1960, pp. 217–249.

    Chapter  Google Scholar 

  9. R. Bellman, Dynamic programming treatment of the travelling salesman problem, Journal of the Association for Computing Machinery 9 (1962) 61–63.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961) 114–115.

    Google Scholar 

  11. C. Berge, Sur certains hypergraphes généralisant les graphes bipartis, Combinatorial Theory and its Applications I (P. Erdős, A. R˝enyi, and V. Sós, eds.), Colloq. Math. Soc. János Bolyai 4 (1970) 119–133.

    Google Scholar 

  12. C. Berge, Balanced matrices, Mathematical Programming 2 (1972) 19–31.

    Article  MathSciNet  MATH  Google Scholar 

  13. R.E. Bixby, Solving real-world linear programs: A decade and more of progress, Operations Research 50 (2002) 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Bock, An algorithm for solving “traveling-salesman” and related network optimization problems, Research Report, Armour Research Foundation, Presented at the Operations Research Society of America Fourteenth National Meeting, St. Louis, October 24, 1958.

    Google Scholar 

  15. M. Chudnovsky, G. Cornuéjols, X. Liu, P.D. Seymour, and K. Vušković, Recognizing Berge graphs, Combinatorica 25 (2005) 143–186.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Annals of Mathematics 164 (2006) 51–229.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathematics 4 (1973) 305–337.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Chvátal, Edmonds polytopes and weakly hamiltonian graphs, Mathematical Programming 5 (1973) 29–40.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Chvátal, On certain polyhedra associated with graphs, Journal of Combinatorial Theory B 18 (1975) 138–154.

    Article  MATH  Google Scholar 

  20. V. Chvátal, Cutting planes in combinatorics, European Journal of Combinatorics 6 (1985) 217–226.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Chvátal, W. Cook, and M. Hartmann, On cutting-plane proofs in combinatorial optimization, Linear Algebra and Its Applications 114/115 (1989) 455–499.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Conforti, G. Cornuéjols, and M.R. Rao, Decomposition of balanced matrices, Journal of Combinatorial Theory, Series B 77 (1999) 292–406.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Cornuéjols, Combinatorial Optimization: Packing and Covering, SIAM, Philadelphia, USA, 2001.

    Book  MATH  Google Scholar 

  24. G.A. Croes, A method for solving traveling-salesman problems, Operations Research 6 (1958) 791–812.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Crowder and M.W. Padberg, Solving large-scale symmetric travelling salesman problems to optimality, Management Science 26 (1980) 495–509.

    Article  MathSciNet  MATH  Google Scholar 

  26. W.H. Cunningham and A.B. Marsh, III, A primal algorithm for optimum matching, Mathematical Programming Study 8 (1978) 50–72.

    Article  MathSciNet  MATH  Google Scholar 

  27. G.B. Dantzig, Discrete-variable extremum problems, Operations Research 5 (1957) 266–277.

    Article  MathSciNet  MATH  Google Scholar 

  28. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large scale traveling salesman problem, Technical Report P-510, RAND Corporation, Santa Monica, California, USA, 1954.

    Google Scholar 

  29. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large-scale travelingsalesman problem, Operations Research 2 (1954) 393–410.

    MathSciNet  MATH  Google Scholar 

  30. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, On a linear-programming, combinatorial approach to the traveling-salesman problem, Operations Research 7 (1959) 58–66.

    Article  MathSciNet  MATH  Google Scholar 

  31. G.B. Dantzig and A.J. Hoffman, Dilworth’s theorem on partially ordered sets, Linear Inequalities and Related Systems (H.W. Kuhn and A.W. Tucker, eds.), Princeton University Press, Princeton, New Jersey, USA, 1956, pp. 207–214.

    Google Scholar 

  32. W.L. Eastman, Linear Programming with Pattern Constraints, Ph.D. Thesis, Department of Economics, Harvard University, Cambridge, Massachusetts, USA, 1958.

    Google Scholar 

  33. J. Edmonds, Paths, trees, and flowers, Working paper, National Bureau of Standards and Princeton University, February 1963.

    Google Scholar 

  34. J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, Journal of Research of the National Bureau of Standards 69B (1965) 125–130.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17 (1965) 449–467.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Edmonds, The Chinese postman’s problem, Bulletin of the Operations Research Society of America 13 (1965) B-73.

    Google Scholar 

  37. J. Edmonds, Optimum branchings, Journal of Research National Bureau of Standards 71B (1967) 233–240.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Edmonds, Submodular functions, matroids, and certain polyhedra, Combinatorial Structures and Their Applications (R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds.), Gordon and Breach, New York, USA, 1970, pp. 69–87.

    Google Scholar 

  39. J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming 1 (1971) 127–136.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Edmonds, Matroid intersection, Discrete Optimization I (P.L. Hammer, E.L. Johnson, and B.H. Korte, eds.), North-Holland, 1979, pp. 39–49.

    Google Scholar 

  41. J. Edmonds and R. Giles, A min-max relation for submodular functions on a graph, Studies in Integer Programming (P.L. Hammer, E.L. Johnson, B.H. Korte, and G.L. Nemhauser, eds.), Annals of Discrete Mathematics 1 (1977) 185–204.

    Google Scholar 

  42. J. Edmonds and E.L. Johnson, Matching, a well-solved class of integer linear programs, Combinatorial Structures and Their Applications (R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds.), Gordon and Breach, New York, USA, 1970, pp. 89–92.

    Google Scholar 

  43. J. Edmonds and E.L. Johnson, Matching, Euler tours, and the Chinese postman, Mathematical Programming 5 (1973) 88–124.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Egerváry, Matrixok kombinatorius tulajonságairól, Matematikai és Fizikai Lapok 38 (1931) 16–28.

    Google Scholar 

  45. M.M. Flood, Merrill Flood (with Albert Tucker), Interview of Merrill Flood in San Francisco on 14 May 1984, The Princeton Mathematics Community in the 1930s, Transcript Number 11 (PMC11), Princeton University. (1984).

    Google Scholar 

  46. L.R. Ford, Jr. and D.R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics 8 (1956) 399–404.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Frank, Kernel systems of directed graphs, Acta Scientiarum Mathematicarum [Szeged] 41 (1979) 63–76.

    MathSciNet  MATH  Google Scholar 

  48. D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Mathematical Programming 1 (1971) 168–194.

    Article  MathSciNet  MATH  Google Scholar 

  49. D.R. Fulkerson, Anti-blocking polyhedra, Journal of Combinatorial Theory, Series B 12 (1972) 50–71.

    Article  MathSciNet  MATH  Google Scholar 

  50. D.R. Fulkerson, A.J. Hoffman, and R. Oppenheim, On balanced matrices, Mathematical Programming Study 1 (1974) 120–132.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Gale, A theorem on flows in networks, Pacific Journal of Mathematics 7 (1957) 1073–1082.

    Article  MathSciNet  MATH  Google Scholar 

  52. F.R. Giles and W.R. Pulleyblank, Total dual integrality and integer polyhedra, Linear Algebra and Its Applications 25 (1979) 191–196.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems, Journal of the Association of Computing Machinery 42 (1995) 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  54. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the American Mathematical Society 64 (1958) 275–278.

    Article  MathSciNet  MATH  Google Scholar 

  55. R.E. Gomory, The traveling salesman problem, Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, IBM, White Plains, New York, USA, 1966, pp. 93–121.

    Google Scholar 

  56. R.E. Gomory, Early integer programming, History of Mathematical Programming—A Collection of Personal Reminiscences (J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver, eds.), North-Holland, 1991, pp. 55–61.

    Google Scholar 

  57. R.H. Gonzales, Solution to the traveling salesman problem by dynamic programming on the hypercube, Technical Report Number 18, Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1962.

    Google Scholar 

  58. M. Grötschel, Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme, Anton Hain Verlag, Meisenheim/Glan, Germany, 1977.

    MATH  Google Scholar 

  59. M. Grötschel, On the symmetric travelling salesman problem: Solution of a 120-city problem, Mathematical Programming Study 12 (1980) 61–77.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Grötschel and O. Holland, Solution of large-scale symmetric travelling salesman problems, Mathematical Programming 51 (1991) 141–202.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering problem, Operations Research 32 (1984) 1195–1220.

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Grötschel, M. Jünger, and G. Reinelt, On the acyclic subgraph polytope, Mathematical Programming 33 (1985) 28–42.

    Article  MathSciNet  MATH  Google Scholar 

  63. M. Grötschel, M. Jünger, and G. Reinelt, Facets of the linear ordering polytope, Mathematical Programming 33 (1985) 43–60.

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169–197.

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs, Topics on Perfect Graphs (C. Berge and V. Chvátal, eds.), Annals of Discrete Mathematics 21 (1984) 325–356.

    Google Scholar 

  66. M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer. (1988).

    Google Scholar 

  67. M. Grötschel and G.L. Nemhauser, George Dantzig’s contributions to integer programming, Discrete Optimization 5 (2008) 168–173.

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Grötschel and W.R. Pulleyblank, Clique tree inequalities and the symmetric travelling salesman problem, Mathematics of Operations Research 11 (1986) 537–569.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Held and R.M. Karp, A dynamic programming approach to sequencing problems, Journal of the Society of Industrial and Applied Mathematics 10 (1962) 196–210.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Held and R.M. Karp, The traveling-salesman problem and minimum spanning trees, Operations Research 18 (1970) 1138–1162.

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Held and R.M. Karp, The traveling-salesman problem and minimum spanning trees: Part II, Mathematical Programming 1 (1971) 6–25.

    Article  MathSciNet  MATH  Google Scholar 

  72. I. Heller, On the problem of the shortest path between points, I. Abstract 664t, Bulletin of the American Mathematical Society 59 (1953) 551.

    Google Scholar 

  73. C. Helmberg, Semidefinite Programming for Combinatorial Optimization, Habilitationsschrift, TU Berlin, ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum Berlin, 2000.

    Google Scholar 

  74. A.J. Hoffman, Generalization of a theorem of König, Journal of the Washington Academy of Sciences 46 (1956) 211–212.

    MathSciNet  Google Scholar 

  75. A.J. Hoffman, Linear programming, Applied Mechanics Reviews 9 (1956) 185–187.

    Google Scholar 

  76. A.J. Hoffman, A generalization of max flow-min cut, Mathematical Programming 6 (1974) 352–359.

    Article  MathSciNet  MATH  Google Scholar 

  77. A.J. Hoffman and J.B. Kruskal, Integral boundary points of convex polyhedra, Linear Inequalities and Related Systems (H.W. Kuhn and A.W. Tucker, eds.), Princeton University Press, Princeton, New Jersey, USA, 1956, pp. 223–246.

    Google Scholar 

  78. A.J. Hoffman and H.W. Kuhn, Systems of distinct representatives and linear programming, The American Mathematical Monthly 63 (1956) 455–460.

    MathSciNet  MATH  Google Scholar 

  79. A.J. Hoffman and R. Oppenheim, Local unimodularity in the matching polytope, Algorithmic Aspects of Combinatorics (B.R. Alspach, P. Hell, and D.J. Miller, eds.), North-Holland, 1978, pp. 201–209.

    Google Scholar 

  80. A.J. Hoffman and D.E. Schwartz, On lattice polyhedra, Combinatorics Volume I (A. Hajnal and V.T. Sös, eds.), North-Holland, 1978, pp. 593–598.

    Google Scholar 

  81. A.J. Hoffman and P. Wolfe, History, The Traveling Salesman Problem (E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds.), JohnWiley & Sons, Chichester, UK, 1985, pp. 1–15.

    Google Scholar 

  82. O.A. Holland, Schnittebenenverfahren für Travelling-Salesman und verwandte Probleme, Ph.D. Thesis, Universität Bonn, Bonn, Germany, 1987.

    MATH  Google Scholar 

  83. S. Hong, A Linear Programming Approach for the Traveling Salesman Problem, Ph.D. Thesis, Johns Hopkins University, Baltimore, Maryland, USA, 1972.

    Google Scholar 

  84. M. Jünger, Polyhedral Combinatorics and the Acyclic Subdigraph Problem, Heldermann Verlag, Berlin, Germany, 1985.

    MATH  Google Scholar 

  85. M. Jünger, G. Reinelt, and S. Thienel, Practical problem solving with cutting plane algorithms, Combinatorial Optimization (W. Cook, L. Lovász, and P. Seymour, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 20, American Mathematical Society, Providence, Rhode Island, USA, 1995, pp. 111–152.

    Chapter  MATH  Google Scholar 

  86. R.M. Karp, Combinatorics, complexity, and randomness, Communications of the ACM 29 (1986) 98–109.

    Article  MathSciNet  MATH  Google Scholar 

  87. R.M. Karp and C.H. Papadimitriou, On linear characterization of combinatorial optimization problems, SIAM Journal on Computing 11 (1982) 620–632.

    Article  MathSciNet  MATH  Google Scholar 

  88. L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics Doklady 20 (1979) 191–194.

    MATH  Google Scholar 

  89. B. Korte and W. Oberhofer, Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeproblems, Mathematical Methods of Operations Research 12 (1968) 217–231.

    Article  MATH  Google Scholar 

  90. B. Korte and W. Oberhofer, Zur Triangulation von Input-Output-Matrizen, Jahrbücher für Nationalökonomie und Statistik 182 (1969) 398–433.

    Google Scholar 

  91. H.W. Kuhn, On certain convex polyhedra, Abstract 799t, Bulletin of the American Mathematical Society 61 (1955) 557–558.

    Google Scholar 

  92. H.W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly 2 (1955) 83–97.

    Article  MathSciNet  MATH  Google Scholar 

  93. H.W. Kuhn, On the origin of the Hungarian method, History of Mathematical Programming—A Collection of Personal Reminiscences (J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver, eds.), North-Holland, 1991, pp. 77–81.

    Google Scholar 

  94. H.W. Kuhn, 57 years of close encounters with George, George Dantzig Memorial Site, INFORMS, 2008, available at http://www2.informs.org/History/dantzig/articles_kuhn.html.

  95. H.W. Kuhn, Email letter sent on December 15, 2008.

    Google Scholar 

  96. H.W. Kuhn and A.W. Tucker, eds. Linear Inequalities and Related Systems, Princeton University Press, Princeton, New Jersey, USA, 1956.

    MATH  Google Scholar 

  97. F. Lambert, The traveling-salesman problem, Cahiers du Centre de Recherche Opérationelle 2 (1960) 180–191.

    MathSciNet  MATH  Google Scholar 

  98. A.H. Land and A.G. Doig, An automatic method of solving discrete programming problems, Econometrica 28 (1960) 497–520.

    Article  MathSciNet  MATH  Google Scholar 

  99. A.H. Land and S. Powell, A survey of the operational use of ILP models, History of Integer Programming: Distinguished Personal Notes and Reminiscences (K. Spielberg and M. Guignard-Spielberg, eds.), Annals of Operations Research 149 (2007) 147–156. 12 Fifty-Plus Years of Combinatorial Integer Programming 429

    Google Scholar 

  100. M. Laurent and F. Rendl, Semidefinite programming and integer programming, Handbook on Discrete Optimization (K. Aardal, G.L. Nemhauser, and R. Weismantel, eds.), Elsevier, 2005, pp. 393–514.

    Google Scholar 

  101. J.K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tracts 69, Mathematisch Centrum, Amsterdam, 1977.

    MATH  Google Scholar 

  102. A.N. Letchford and A. Lodi, Primal cutting plane algorithms revisited, Mathematical Methods of Operations Research 56 (2002) 67–81.

    Article  MathSciNet  MATH  Google Scholar 

  103. S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem, Operations Research 21 (1973) 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  104. J.D. Little, K.G.Murty, D.W. Sweeney, and C. Karel, An algorithm for the traveling salesman problem, Operations Research 11 (1963) 972–989.

    Article  MATH  Google Scholar 

  105. L. Lovász, A characterization of perfect graphs, Journal of Combinatorial Theory, Series B 13 (1972) 95–98.

    Article  MathSciNet  MATH  Google Scholar 

  106. L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics 2 (1972) 253–267.

    Article  MathSciNet  MATH  Google Scholar 

  107. L. Lovász, On the Shannon capacity of graphs, IEEE Transactions on Information Theory 25 (1979) 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  108. L. Lovász and A. Schrijver, Cones of matrices and set-functions, and 0-1 optimization, SIAM Journal on Optimization 1 (1991) 166–190.

    Article  MathSciNet  MATH  Google Scholar 

  109. C.L. Lucchesi and D.H. Younger, A minimax theorem for directed graphs, The Journal of the London Mathematical Society 17 (1978) 369–374.

    Article  MathSciNet  MATH  Google Scholar 

  110. A.S. Manne and H.M. Markowitz, On the solution of discrete programming problems, Technical Report P-711, RAND Corporation, Santa Monica, California, USA, 1956.

    Google Scholar 

  111. H.M.Markowitz and A.S.Manne, On the solution of discrete programming problems, Econometrica 25 (1957) 84–110.

    Article  MathSciNet  MATH  Google Scholar 

  112. G.T. Martin, Solving the traveling salesman problem by integer linear programming, Technical Report, C-E-I-R, New York, USA, 1966.

    Google Scholar 

  113. K. Menger, Bericht über ein mathematisches Kolloquium, Monatshefte für Mathematik und Physik 38 (1931) 17–38.

    Article  MathSciNet  MATH  Google Scholar 

  114. C.A. Micchelli, Selected Papers of Alan Hoffman with Commentary, World Scientific Publishing Company, 2003.

    Google Scholar 

  115. P. Miliotis, Using cutting planes to solve the symmetric travelling salesman problem, Mathematical Programming 15 (1978) 177–188.

    Article  MathSciNet  MATH  Google Scholar 

  116. C.E. Miller, A.W. Tucker, and R.A. Zemlin, Integer programming formulation of traveling salesman problems, Journal of the Association for Computing Machinery 7 (1960) 326–329.

    Article  MathSciNet  MATH  Google Scholar 

  117. J. Munkres, Algorithms for the assignment and transportation problems, Journal of the Society for Industrial and Applied Mathematics 5 (1957) 32–33.

    Article  MathSciNet  MATH  Google Scholar 

  118. G.L. Nemhauser and L.E. Trotter, Jr., Properties of vertex packing and independence system polyhedra, Mathematical Programming 6 (1974) 48–61.

    Article  MathSciNet  MATH  Google Scholar 

  119. G.L. Nemhauser and L.E. Trotter, Jr., Vertex packings: Structural properties and algorithms, Mathematical Programming 8 (1975) 232–248.

    Article  MathSciNet  MATH  Google Scholar 

  120. Y. Nesterov and A. Nemirovski, Conic formulation of a convex programming problem and duality, Optimization Methods and Software 1 (1992) 95–115.

    Article  Google Scholar 

  121. Y. Nesterov and A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia, USA, 1994.

    Book  Google Scholar 

  122. M.W. Padberg, On the facial structure of set packing polyhedra, Mathematical Programming 5 (1973) 199–215.

    Article  MathSciNet  MATH  Google Scholar 

  123. M.W. Padberg, Mixed-integer programming — 1968 and thereafter, History of Integer Programming: Distinguished Personal Notes and Reminiscences (K. Spielberg and M. Guignard-Spielberg, eds.), Annals of Operations Research 149 (2007) 147–156.

    Google Scholar 

  124. M.W. Padberg and S. Hong, On the symmetric travelling salesman problem: A computational study, Mathematical Programming Study 12 (1980) 78–107.

    Article  MathSciNet  MATH  Google Scholar 

  125. M.W. Padberg and M.R. Rao, The Russian method for linear programming III: Bounded integer programming, Research Report 81-39, New York University, Graduate School of Business Administration, 1981. 430 William Cook

    Google Scholar 

  126. M.W. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman problem by branch and cut, Operations Research Letters 6 (1987) 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  127. M.W. Padberg and G. Rinaldi, Facet identification for the symmetric traveling salesman polytope, Mathematical Programming 47 (1990) 219–257.

    Article  MathSciNet  MATH  Google Scholar 

  128. M.W. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Review 33 (1991) 60–100.

    Article  MathSciNet  MATH  Google Scholar 

  129. W.R. Pulleyblank, Faces ofMatching Polyhedra, Ph.D. Thesis, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada, 1973.

    Google Scholar 

  130. W.R. Pulleyblank and J. Edmonds, Facets of 1-matching polyhedra, Hypergraph Seminar (C. Berge and D. Ray-Chaudhuri, eds.), Springer, 1974, pp. 214–242.

    Google Scholar 

  131. G. Reinelt, The Linear Ordering Problem: Algorithms and Applications, Heldermann Verlag, Berlin, Germany, 1985.

    MATH  Google Scholar 

  132. J. Robinson, On the Hamiltonian game (a traveling salesman problem), Research Memorandum RM-303, RAND Corporation, Santa Monica, California, USA, 1949.

    Google Scholar 

  133. A. Schrijver, On cutting planes, Combinatorics 79 Part II (M. Deza and I.G. Rosenberg, eds.), Annals of Discrete Mathematics 9, North-Holland, 1980, pp. 291–296.

    Chapter  Google Scholar 

  134. A. Schrijver, On total dual integrality, Linear Algebra and Its Applications 38 (1981) 27–32.

    Article  MathSciNet  MATH  Google Scholar 

  135. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, Germany, 2003.

    MATH  Google Scholar 

  136. A. Schrijver, On the history of combinatorial optimization (till 1960), Handbook of Discrete Optimization (K. Aardal, G.L. Nemhauser, and R. Weismantel, eds.), Elsevier, 2005, pp. 1–68.

    Google Scholar 

  137. A. Schrijver and P.D. Seymour, A proof of total dual integrality of matching polyhedra, Report ZN 79/77, Stichting Mathematisch Centrum, Amsterdam, 1977.

    Google Scholar 

  138. P.D. Seymour, The matroids with the max-flow min-cut property, Journal of Combinatorial Theory, Series B 23 (1977) 289–295.

    Article  MathSciNet  MATH  Google Scholar 

  139. P.D. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory, Series B 28 (1980) 305–359.

    Article  MathSciNet  MATH  Google Scholar 

  140. P.D. Seymour, How the proof of the strong perfect graph conjecture was found, Gazette des Mathematiciens 109 (2006) 69–83.

    MathSciNet  MATH  Google Scholar 

  141. M. Todd, Semidefinite optimization, Acta Numerica 10 (2001) 515–560.

    Article  MathSciNet  MATH  Google Scholar 

  142. H.Wolkowicz, Semidefinite and cone programming bibliography/comments/abstracts, 2008, see http://orion.uwaterloo.ca/∼hwolkowi/henry/book/fronthandbk.d/handbooksdp.html.

  143. L.A. Wolsey, Further facet generating procedures for vertex packing polytopes, Mathematical Programming 11 (1976) 158–163.

    Article  MathSciNet  MATH  Google Scholar 

  144. D.B. Yudin and A S. Nemirovski, Evaluation of the informational complexity of mathematical programming problems, Ékonomica i Matematicheskie Metody 12 (1976) 128–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cook, W. (2010). Fifty-Plus Years of Combinatorial Integer Programming. In: Jünger, M., et al. 50 Years of Integer Programming 1958-2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68279-0_12

Download citation

Publish with us

Policies and ethics