Return Effects and Random Shear Flows

  • Oleg G. Bakunin
Part of the Springer Series in Synergetics book series (SSSYN)


Hurst Exponent Turbulent Transport Return Effect Return Probability Random Walk Generate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Random Flows and Transport

  1. Batchelor, G.K., Moffat, H.K., and Worster, M.G. (2000). Perspectives in Fluid Dynamics. Cambridge University Press, Cambridge, U.K.zbMATHGoogle Scholar
  2. Bouchaud, G.P. and Georges, A. (1990). Physics Reports, 195, 132–292.Google Scholar
  3. Childress, S. and Gilbert, A.D. (1995). Stretch, Twist, Fold: The Fast Dynamo. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  4. Crisanti, A., Falcioni, M., and Vulpiani, A. (1991). Rivista Del Nuovo Cimento, 14, 1–80.CrossRefADSMathSciNetGoogle Scholar
  5. Haus, J.W. and Kehr, K.W. (1987). Physics Reports, 150, 263.CrossRefADSGoogle Scholar
  6. Horton, W. and Ichikawa, Y.-H. (1994). Chaos and Structures in Nonlinear Plasmas. World Scientific, Singapore.Google Scholar
  7. Isichenko, M.B. (1992). Reviews of Modern Physics, 64, 961.CrossRefADSMathSciNetGoogle Scholar
  8. Majda, A. and Kramer, P. (1999). Physics Reports, 314, 237–574.CrossRefMathSciNetADSGoogle Scholar
  9. Moffatt, H.K., Zaslavsky, G.M., Comte, P., and Tabor, M. (1992), Topological Aspects of the Dynamics of Fluids and Plasmas. Kluwer Academic, Dordrecht.zbMATHGoogle Scholar
  10. Sornette, D. (2006). Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oleg G. Bakunin
    • 1
  1. 1.Kurchatov Institute Nuclear Fusion InstituteRussia

Personalised recommendations