Continuous Time Random Walks and Transport Scalings

  • Oleg G. Bakunin
Part of the Springer Series in Synergetics book series (SSSYN)


Memory Effect Vortex Structure Memory Function Fractional Differential Equation Relaxation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Continuous Time Random Walk and Scaling

  1. Ben-Avraham, D. and Havlin, S. (1996). Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, U.K.Google Scholar
  2. Bendler, J.T., Fontanella, J.J., and Shlesinger, M.F. (2004). Physica, D 48, 67.MathSciNetGoogle Scholar
  3. Metzler, R. and Klafter, J. (2000). Phys. Rep., 339, 1.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. Montroll, E.W. and Shlesinger, M.F. (1984). On the wonderful world of random walks, in Studies in Statistical Mechanics, 11, 1. Elsevier, Amsterdam.Google Scholar
  5. Montroll, E.W. and West, B.J. (1979). On an enriches collection of stochastic processes, in Fluctuation Phenomena. Elsevier, Amsterdam.Google Scholar

Fractional Differential Equations and Turbulent Transport

  1. Balescu, R. (1997). Statistical Dynamics. Imperial College Press, London.zbMATHGoogle Scholar
  2. Shiesinger, M.F. and Zaslavsky, G.M. (1995). Levy Flights and Related Topics in Physics. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. West, B.J., Bologna, M., and Grigolini, P. (2003). Physics of Fractal Operators. Springer-Verlag, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oleg G. Bakunin
    • 1
  1. 1.Kurchatov Institute Nuclear Fusion InstituteRussia

Personalised recommendations