Subdiffusion and Trapping

  • Oleg G. Bakunin
Part of the Springer Series in Synergetics book series (SSSYN)


Correlation Scale Anomalous Transport Strong Turbulence Double Diffusion Trapping Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Diffusion and Trapping Effects

  1. Ben-Avraham, D. and Havlin, S. (1996). Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, U.K.Google Scholar
  2. Bouchaud, G.P. and Georges, A. (1990). Physics Reports, 195, 132–292.CrossRefADSMathSciNetGoogle Scholar
  3. Hanggi, P. and Talkner, P., eds. (1995). New Trends in Kramer’s Reaction Rate Theory. Kluwer Academic, Boston.Google Scholar
  4. Haus, J.W. and Kehr, K.W. (1987). Physics Reports, 150, 263.CrossRefADSGoogle Scholar
  5. Metzler, R. and Klafter, J. (2000). Physics Reports, 339, 1.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. Montroll, E.W. and Shlesinger, M.F. (1984). On the wonderful world of random walks, in Studies in Statistical Mechanics 11, 1. Elsevier, Amsterdam.Google Scholar
  7. Montroll, E.W. and West, B.J. (1979). On an enriched collection of stochastic processes, in Fluctuation Phenomena. Elsevier, Amsterdam..Google Scholar

Trapping and Structures

  1. Balescu, R. (1997). Statistical Dynamics. Imperial College Press, London.zbMATHGoogle Scholar
  2. Shiesinger, M.F. and Zaslavsky, G.M. (1995). Levy Flights and Related Topics in Physics. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. Zaslavsky, G.M. (2002). Physics Reports, 371, 461–580.zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oleg G. Bakunin
    • 1
  1. 1.Kurchatov Institute Nuclear Fusion InstituteRussia

Personalised recommendations