Advertisement

Fractal and Percolation Concepts

  • Oleg G. Bakunin
Part of the Springer Series in Synergetics book series (SSSYN)

Keywords

Correlation Length Percolation Threshold Hurst Exponent Percolation Cluster Fractal Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Fractals and Diffusion

  1. Ben-Avraham, D. and Havlin, S. (1996). Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, U.K.Google Scholar
  2. Bunde, A. and Havlin, S., eds. (1996). Fractals in Science. Springer-Verlag, Berlin.Google Scholar
  3. Bunde, A. and Havlin, S., eds. (1995). Fractals and Disordered Systems. Springer-Verlag, Berlin.Google Scholar
  4. Feder, J. (1988). Fractals. Plenum Press, New York.zbMATHGoogle Scholar
  5. Gouyet, J.-F. (1996). Physics and Fractal Structure. Springer-Verlag, Berlin.Google Scholar
  6. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. W.H. Freeman, San Francisco.zbMATHGoogle Scholar
  7. Schroeder, M. (2001). Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise.W.H. Freeman, New York.zbMATHGoogle Scholar
  8. Pietronero, L. (1988). Fractals’ Physical Origin and Properties. Plenum Press, New York.Google Scholar

Fractals and Turbulence

  1. Biferale, L. and Procaccia, I. (2005). Physics Reports, 254, 1–41.MathSciNetGoogle Scholar
  2. Bohr, T., Jensen, M.H., Giovanni, P., and Vulpiani, A. (2003). Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge, U.K.Google Scholar
  3. Davidson, P.A. (2004). Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford.zbMATHGoogle Scholar
  4. Falkovich, G., Gawedzki, K., and Vergassola, M. (2001). Reviews of Modern Physics, 73, 913.CrossRefADSMathSciNetGoogle Scholar
  5. Frisch, U. (1995). Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, U.K.zbMATHGoogle Scholar
  6. Gouyet, J.-F. (1996). Physics and Fractal Structure. Springer-Verlag, Berlin.Google Scholar
  7. Kida, S. and Takaoka, M. (1994). Annual Reviews of Fluid Mechanics, 26, 169.CrossRefADSMathSciNetGoogle Scholar
  8. Oberlack, M. and Busse, F.H., eds. (2002). Theories of Turbulence. Springer-Verlag, Vienna.Google Scholar
  9. Peinke, J., Kittel, A., Barth, S., and Oberlack, M., eds. (2005). Progress in Turbulence. Springer-Verlag, Berlin.Google Scholar
  10. Siggia, E.D. (1994). Annual Reviews of Fluid Mechanics, 26, 137.CrossRefADSMathSciNetGoogle Scholar
  11. Sreenivasan, K.R. (1997). Annual Reviews of Fluid Mechanics, 29, 435.CrossRefADSMathSciNetGoogle Scholar
  12. Sreenivasan, K.R. (1999). Reviews of Modern Physics, 71, S 383.CrossRefADSGoogle Scholar
  13. Tsinober, A. (2004). An Informal Introduction to Turbulence. Kluwer Academic, Dordrecht.Google Scholar
  14. Vassilicos, J.C., ed. (2001). Intermittency in Turbulent Flows. Cambridge University Press, Cambridge, U.K.zbMATHGoogle Scholar

Percolation

  1. Bunde, A. and Havlin, S., Eds. (1995). Fractals and Disordered Systems. Springer-Verlag, Berlin.Google Scholar
  2. Isichenko, M.B. (1992). Reviews of Modern Physics, 64, 961.CrossRefADSMathSciNetGoogle Scholar
  3. Stauffer, D. (1979). Physics Reports, 2, 3.Google Scholar
  4. Stauffer, D. (1985). Introduction to Percolation Theory. Taylor and Francis, London.zbMATHCrossRefGoogle Scholar
  5. Stanley, H.E. (1971). Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford.Google Scholar
  6. Sokolov, I.M. (1986). Soviet Physics Uspekhi, 29, 924.CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oleg G. Bakunin
    • 1
  1. 1.Kurchatov Institute Nuclear Fusion InstituteRussia

Personalised recommendations