Skip to main content

Natural History and Monitoring of Fractures and Microfractures

  • Chapter
Imaging of Orthopedic Sports Injuries

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2184 Accesses

28.4 Conclusions

Evaluation of sports-related fractures and microfractures is heavily dependent on imaging. With increased participation of children and adults in organized or recreational sports activities, radiologists are frequently asked to assist in the diagnosis and management of these patients. Plain radiographs are important in depicting and monitoring osseous fractures, avulsion injuries and osteochondral lesions. MRI is extremely valuable for assessing, grading and monitoring healing of osteochondral lesions and microfractures in the context of both acute trauma and stress injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson IF, Crichton KJ, Grattan-Smith T et al. (1989) Osteochondral fractures of the dome of the talus. J Bone Joint Surg Am 71:1143–1152

    PubMed  CAS  Google Scholar 

  • Ánderson MW, Greenspan A (1996) Stress fractures. Radiology 199:1–12

    PubMed  Google Scholar 

  • Anderson MW, Ugalde V, Batt M et al. (1997) Shin splints: MR appearance in a preliminary study. Radiology 204:177–180

    PubMed  CAS  Google Scholar 

  • Anderson MW, Kaplan PA, Dussault RG (2001) Adductor insertion avulsion syndrome (thigh splints): spectrum of MR imaging features. AJR Am J Roentgenol 177:673–675

    PubMed  CAS  Google Scholar 

  • Arendt EA, Griffiths HJ (1997) The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 16:291–306

    Article  PubMed  CAS  Google Scholar 

  • Ariyoshi M, Nagata K, Sato K et al. (1997) Hemarthrosis of the knee and bone contusion. Kurume Med J 44:135–139

    PubMed  CAS  Google Scholar 

  • Bergman AG, Fredericson M, Ho C et al. (2004) Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR Am J Roentgenol 183:635–638

    PubMed  Google Scholar 

  • Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg 41:988–1020

    PubMed  Google Scholar 

  • Bohndorf K (1999) Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skelet Radiol 28:545–560

    Article  CAS  Google Scholar 

  • Brandser EA, el-Khoury GY, Kathol MH (1995) Adolescent hamstring avulsions that simulate tumors. Emerg Radiol 2:273–278

    Google Scholar 

  • Bretlau T, Tuxoe J, Larsen L et al. (2002) Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc 10:96–101

    Article  PubMed  Google Scholar 

  • Burt CW, Overpeck MD (2001) Emergency visits for sports related injuries. Ann Emerg Med 37:301–308

    Article  PubMed  CAS  Google Scholar 

  • Cerezal L, Abascal F, Canga A et al. (2000) Usefulness of gadolinium-enhanced MR imaging in the evaluation of the vascularity of scaphoid nonunions. AJR Am J Roentgenol 174:141–149

    PubMed  CAS  Google Scholar 

  • Chapman S (1992) The radiological dating of injuries. Arch Dis Child 67:1063–1065

    Article  PubMed  CAS  Google Scholar 

  • Coady C, Micheli L (1997) Stress fractures in the padiatric athlete. Clin Sports Med 16:225–238

    Article  PubMed  CAS  Google Scholar 

  • Crues RL, Dumont J (1975) Fracture healing. Can J Surg 18:403–413

    Google Scholar 

  • Daffner R, Pavlov H (1992) Stress fractures: current concepts. AJR Am J Roentgenol 159:245–252

    PubMed  CAS  Google Scholar 

  • Dailiana ZH, Zachos V, Varitimidis S et al. (2004) Scaphoid nonunions treated with vascularised bone grafts: MRI assessment. Eur J Radiol 50:217–224

    Article  PubMed  CAS  Google Scholar 

  • Davies NH, Niall D, King LJ et al. (2004) Magnetic resonance imaging of bone bruising in the acutely injured kneeshort-term outcome. Clin Radiol 59:439–445

    Article  PubMed  CAS  Google Scholar 

  • De Smet AA, Ilahi OA, Graf BK (1996) Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skelet Radiol 25:159–163

    Article  Google Scholar 

  • Deutsch AL, Coel MN, Mink JH (1997) Imaging of stress injuries to bone: radiography, scintigraphy, and MR imaging. Clin Sports Med 16:275–290

    Article  PubMed  CAS  Google Scholar 

  • el-Khoury GY, Daniel WW, Kathol MH (1997) Acute and chronic avulsive injuries. Radiol Clin North Am 35:747–766

    PubMed  CAS  Google Scholar 

  • Fredericson M, Bergman G, Hoffman KL et al. (1995) Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new MRI grading system. Am J Sports Med 23:472–481

    PubMed  CAS  Google Scholar 

  • Frost HM (1989a) Biology of fracture healing: an overview for clinicians. Part I. Clin Orthop Relat Res 248:283–293

    PubMed  Google Scholar 

  • Frost HM (1989b) Biology of fracture healing: an overview for clinicians. Part II. Clin Orthop Relat Res 248:294–309

    PubMed  Google Scholar 

  • Gaeta M, Minutoli F, Scribano E et al. (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 235:553–561

    PubMed  Google Scholar 

  • Giaroli EL, Major NM, Higgins LD (2005) MRI of internal impingement of the shoulder. AJR Am J Roentgenol 185:925–929

    Article  PubMed  Google Scholar 

  • Groves AM, Cheow H, Balan K et al. (2005) 16-MDCT in the detection of occult wrist fractures: a Comparison with skeletal scintigraphy AJR Am J Roentgenol 184:1470–1474

    PubMed  Google Scholar 

  • Heppenstall RB (1980) Fracture healing. In: Heppenstall RB (ed) Fracture treatment and healing. Saunders, Philadelphia, pp 35–64

    Google Scholar 

  • Horev G, Koreneich L, Ziv N et al. (1990) The enigma of stress fractures in the pediatric age: clarification or confusion through the new imaging modalities. Pediatr Radiol 20:469–471

    Article  PubMed  CAS  Google Scholar 

  • Hwang B, Fredericson M, Chung CB et al. (2005) MRI findings of femoral diaphyseal stress injuries in athletes. AJR Am J Roentgenol 185:166–173

    PubMed  Google Scholar 

  • Islam O, Soboleski D, Symons S et al. (2000) Development and duration of radiographic signs of bone healing in Children. AJR Am J Roentgenol 175:75–78

    PubMed  CAS  Google Scholar 

  • Jones BH, Harris JM, Vinh TN et al. (1989) Exercise-induced stress fractures and stress reactions of bone. Epidemiology, etiology, and classification. Exerc Sport Sci Rev 17:379–422

    PubMed  CAS  Google Scholar 

  • Kapelov SR, Teresi LM, Bradley WG et al. (1993) Bone contusions of the knee: increased lesion detection with fast spin-echo MR imaging with spectroscopic fat saturation. Radiology 189:901–904

    PubMed  CAS  Google Scholar 

  • Kiuru MJ, Niva M, Reponen A et al. (2005) Bone stress injuries in asymptomatic elite recruits: a clinical and MRI study. Am J Sports Med 33:272–276

    Article  PubMed  Google Scholar 

  • Lawson GM, Hajducka C, McQueen MM (1995) Sports fractures of the distal radius-epidemiology and outcome. Injury 26:33–36

    Article  PubMed  CAS  Google Scholar 

  • Lazzarini KM, Troiano RN, Smith RC (1997) Can running cause the appearance of marrow edema on MR images of the foot and ankle? Radiology 202:540–542

    PubMed  CAS  Google Scholar 

  • Linklater J (2004) Ligamentous, chondral, and osteochondral ankle injuries in athletes. Semin Musculoskelet Radiol 8:81–98

    Article  PubMed  Google Scholar 

  • Livstone BJ, Parker L, Levin DC (2002) Trends in the utilization of MR angiography and body MR imaging in the US medicare population: 1993–1998. Radiology 222:615–618

    PubMed  Google Scholar 

  • Low G, Raby N (2005) Can follow-up radiography for acute scaphoid fracture still be considered a valid examination? Clin Radiol 60:1106–1110

    Article  PubMed  CAS  Google Scholar 

  • Mandalia V, Fogg AJ, Chari R et al. (2005) Bone bruising of the knee. Clin Radiol 60:627–636

    Article  PubMed  CAS  Google Scholar 

  • Matheson GO, Clement DB, McKenzie DC et al. (1987) Stress fractures in athletes; a study of 320 cases. Am J Sports Med 15:46–58

    PubMed  CAS  Google Scholar 

  • Metzmaker JN, Pappas AM (1985) Avulsion fractures of the pelvis. Am J Sports Med 13:349–358

    PubMed  CAS  Google Scholar 

  • Micheli LJ, Fehlandt AF Jr (1992) Overuse injuries to tendons and apophyses in children and adolescents. Clin Sports Med 11:713–726

    PubMed  CAS  Google Scholar 

  • Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee: detection, classification and assessment with MR imaging. Radiology 170:823–829

    PubMed  CAS  Google Scholar 

  • Morrison WB (2003) MRI of sports injuries of the ankle. Top Magn Reson Imaging 14:179–197

    Article  PubMed  Google Scholar 

  • Nakagawa S, Yoneda M, Hyashida K et al. (2001) Greater tuberosity notch: an important indicator of articular-side partial rotator cuff tears in the shoulders of throwing athletes. Am J Sports Med 29:762–770

    PubMed  CAS  Google Scholar 

  • Oeppen RS, Jaramillo D (2003) Sports injuries in the young athlete. Top Magn Reson Imaging 14:199–208

    Article  PubMed  Google Scholar 

  • Ohta-Fukushima M, Mutoh Y, Takasugi S et al. (2002) Characteristics of stress fractures in young athletes under 20 years. J Sports Med Phys Fitness 42:198–206

    PubMed  CAS  Google Scholar 

  • Overdeck KH, Palmer WE (2004) Imaging of hip and groin injuries in athletes. Semin Musculoskel Radiol 8:41–55

    Article  Google Scholar 

  • Peterson HA (1984) Partial growth plate arrest and its treatment. J Pediatr Orthop 4:246–258

    PubMed  CAS  Google Scholar 

  • Peterson L, Minas T, Brittberg M et al. (2000) Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop 374:212–234

    Article  PubMed  Google Scholar 

  • Pettine KA, Morrey B (1987) Osteochondral fractures of the talus. A long term follow-up. J Bone Joint Surg Br 69:89–92

    PubMed  CAS  Google Scholar 

  • Rangger C, Kathrein A, Freund MC et al. (1998) Bone bruise of the knee: histology and cryosections in 5 cases. Acta Orthop Scand 69:291–294

    Article  PubMed  CAS  Google Scholar 

  • Rennie WJ, Finlay DB (2003) Posttraumatic cystlike defects of the scaphoid: late sign of occult microfracture and useful indicator of delayed union. AJR Am J Roentgenol 180:655–658

    PubMed  CAS  Google Scholar 

  • Rosen M, Jackson D, Berger P (1991) Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthrosopy 7:45–51

    CAS  Google Scholar 

  • Rosner JL, Zlatkin MB, Clifford P et al. (2004) Imaging of athletic wrist and hand injuries. Semin Musculoskelet Radiol 8:57–79

    Article  PubMed  Google Scholar 

  • Rubin DA, Harner CD, Costello JM (2000) Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. AJR Am J Roentgenol 174:1099–1106

    PubMed  CAS  Google Scholar 

  • Ryu KM, Jin W, Ko YT et al. (2000) Bone bruises: MR characteristics and histological correlation in the young pig. Clin Imaging 24:371–380

    Article  PubMed  CAS  Google Scholar 

  • Salter RB, Harris R (1963) Injuries involving the epiphyseal plate. J Bone Joint Surg 45A:587–622

    Google Scholar 

  • Sanders TG, Medynski MA, Feller JF et al. (2000) Bone contusion pattern of the knee at MR imaging: footprint of the mechanism of injury. RadioGraphics 20:S135–151

    PubMed  Google Scholar 

  • Sanders TG, Mentzer KD, Miller M et al. (2001) Autogenous osteochondral “plug” transfer for the treatment of focal chondral defects: postoperative MR appearance with clinical correlation. Skeletal Radiol 30:570–578

    Article  PubMed  CAS  Google Scholar 

  • Shea MP, Manoli A II (1993) Osteochondral lesions of the talar dome. Foot Ankle 14:48–55

    PubMed  CAS  Google Scholar 

  • Sofka CM (2004) Ultrasound in sports medicine. Semin Musculoskel Radiol 8:17–27

    Article  Google Scholar 

  • Spitz D, Newberg A (2003) Imaging of stress fractures in the athlete. Magn Reson Imaging Clin N Am 11:323–339

    Article  Google Scholar 

  • Stanitski CL (1998a) Epiphyseal fractures about knee. Oper Techn Sports Med 6:234–242

    Article  Google Scholar 

  • Stanitski CL (1998b) Acute tibial tubercle avulsion fractures. Oper Techn Sports Med 6:243–246

    Article  Google Scholar 

  • Stone JW (1996) Osteochondral lesions of the talar dome. J Am Acad Orthop Surg 4:63–73

    PubMed  Google Scholar 

  • Takahara M, Ogino T, Takagi M et al. (2000) Natural progression of osteochondritis dissecans of the humeral capitellum: initial observations. Radiology 216:207–212

    PubMed  CAS  Google Scholar 

  • Tehranzadeh J (1987) The spectrum of avulsion and avulsionlike injuries of the musculoskeletal system. RadioGraphics 7:945–974

    PubMed  CAS  Google Scholar 

  • Torriani M, Kattapuram SV (2003) Musculoskeletal ultrasound: an alternative imaging modality for sports-related injuries. Top Magn Reson Imaging 14:103–111

    Article  PubMed  Google Scholar 

  • Vanhoenacker FM, Snoeckx A, Vandaele L et al. (2005) Bone marrow changes in sports injuries. JBR-BTR 88:332–335

    PubMed  CAS  Google Scholar 

  • Wright RW, Phaneuf MA, Limbird TJ et al. (2000) Clinical outcome of isolated subcortical trabecular fractures (bone bruise) detected on magnetic resonance imaging in knees. Am J Sports Med 28:663–667

    PubMed  CAS  Google Scholar 

  • Yao L, Johnson C, Gentili A et al. (1998) Stress injuries of bone: analysis of MR imaging staging criteria. Acad Radiol 5:34–40

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M, Weishaupt D, Jost B et al. (1999) MR imaging for traumatic tears of the rotator cuff: high prevalence of greater tuberosity fractures and subscapularis tendon tears. AJR Am J Roentgenol 172:463–467

    PubMed  CAS  Google Scholar 

  • Zarins B, Cuillo JV (1983) Acute muscle and tendon injuries in athletes. Clin Sports Med 2:167–182

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karantanas, A.H. (2007). Natural History and Monitoring of Fractures and Microfractures. In: Vanhoenacker, F.M., Maas, M., Gielen, J.L. (eds) Imaging of Orthopedic Sports Injuries. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68201-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68201-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26014-1

  • Online ISBN: 978-3-540-68201-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics