Skip to main content

Bioreactors for Mammalian Cells: General Overview

  • Chapter
Cell and Tissue Reaction Engineering

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

For the development and manufacturing of biotechnological medicines, the in vitro cultivation of animal cells has now become an accepted technology. In fact, about 50% of all commercial biotechnological products used for in vivo diagnostic and therapeutic purposes today are made using procedures based on animal cells. In addition to products from cells that are glycoproteins (drug products, e.g., cytokines, growth hormones, hematopoietic growth factors and antibodies, and viral vaccines, see Chaps. 1 and 2), cells as products for regenerative medicine, namely cellular therapies and tissue engineering, have been successfully investigated in clinical trials and introduced on the market.

Bioreactors from small (milliliter range up to 10L) to large scale (above 500L) have been developed over the past 50 years for animal-cell-culture-based applications. Suitable cell and tissue culture types displaying similar characteristics and specific differences (Chap. 2) have resulted in a variety of bioreactor types and their modifications, manufactured from plastics, glass, or steel. Although no universal bioreactor suitable for all cell and tissue culture types exists, it is obvious that conventional stirred bioreactors from stainless steel are the gold standard and dominate both in R&D and manufacturing.

This chapter aims to present a general overview of suitable bioreactor types for animal cells. On the basis of differentiation between static and dynamic bioreactors as well as methods of power input and primary pressure, we attempt to categorize the most frequently used cell culture bioreactor types, explain their typical working principles, and deduce possible fields of application. Furthermore, cell culture bioreactor trends for R&D and manufacturing, and special features of bioreactors for 3D tissue formation and stem cell cultivation are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACI:

autologous chondrocyte implantation

ACT:

autologous chondrocyte transplantation

ADCT:

autologous disc chondrocyte transplantation

BHK:

baby hamster kidney

CD:

chemically defined

CHO:

Chinese hamster ovary

CIP:

cleaning-in-place

D:

vessel inside diameter

E. coli :

Escherichia coli

EPO:

erythropoietin

GMP:

good manufacturing practice

HEK:

human embryogenic kidney

k L a :

oxygen transfer coefficient

L :

vessel inside height

MACI:

matrix coupled autologous chondrocyte implantation

NS0:

mouse myeloma cell line

P/V :

specific power input

R&D:

research and development

rpm:

revolution per minute

SIP:

sterilization-in-place

Sf-9:

Spodoptera frugiperda (subclone 9)

T. chinensis :

Taxus chinensis

tPA:

tissue plasminogen activator

V:

volume of the medium

3D:

three-dimensional

°C:

degree centigrade

References

  • Aldridge S (2004) Biomanufacturing faces new set of challenges. GEN 24:1–9

    Google Scholar 

  • Aldridge S (2005) New biomanufacturing opportunities & challenges. GEN 25:1–16

    Google Scholar 

  • Aldridge S (2007) Techniques for cell culture improvement. GEN 27:38–39

    Google Scholar 

  • Altaras GM, Eklund C, Ranucci C, Maheswari G (2007) Quantification of interaction of lipids with polymer surfaces in cell culture. Biotechnol Bioeng 96:999–1007

    PubMed  Google Scholar 

  • Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124:742–749

    PubMed  Google Scholar 

  • Aunins J (2000) Viral vaccine production in cell culture. In: Spier RE (ed) Encyclopedia of cell technology, vol 2. Wiley, New York, pp 1182–1217

    Google Scholar 

  • Auton KA, Bick JA, Taylor IM (2007) Strategies for the culture of CHO-S cells. GEN 27:42–43

    Google Scholar 

  • Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A (2003) Bioreactors for cardiovascular cell and tissue growth. Ann Biomed Eng 31:1017–1030

    PubMed  Google Scholar 

  • Baumann F (2004) CeLLine Zwei-Kompartment-Bioreaktoren: Einführung in die Technologie und Applikation. Workshop, Disposable Kultivierungstechnologie, Wädenswil, Switzerland, October 5–6

    Google Scholar 

  • Bilodeau K, Mantovani D (2006) Bioreactors for tissue engineering: Focus on mechanical constraints. A comparative review. Tissue Eng 12:2367–2383

    PubMed  Google Scholar 

  • Blasey HD, Brethon B, Hovius R, Vogel H, Tairi AP, Lundström K, Rey L, Bernard AR (2000) Large scale transient 5-HT3 receptor production with the Semikli Forest Expression System. Cytotechnol 32:199–208

    Google Scholar 

  • Bock AK, Ibarreta D, Rodriguez-Cerezo E (2003) Human Tissue Engineered Products: Today’s Markets and Future Prospects (Report EUR 21000 EN). Europäische Kommission, Brüssel Luxembourg

    Google Scholar 

  • Bock AK, Rodriguez-Cerezo E, Hüsing B, Bührlen B, Nusser M (2005) Human Tissue Engineered Products: Potential Socio-Economic Impacts of a new European regulatory Framework for Authorisation, Supervision and Vigilance (ISI-B-48-05). Europäische Kommission, Brüssel Luxembourg

    Google Scholar 

  • Boehm J (2007) Linking stainless and single-use systems. GEN 27:42–43

    Google Scholar 

  • Born C, Biselli M, Wandrey C (1995) Production of monoclonal antibodies in a pilot scale fluidized bed bioreactor. In: Beuvery EC, Griffiths Zeijlemaker WP (eds) Animal Cell Technology: Development Towards the 21st Century. Kluwer, Dordrecht, pp 683–686

    Google Scholar 

  • Brecht R (2004) Bedeutung von disposable Hohlfasermodulen für die Herstellung von Biopharmazeutika. Workshop, Disposable Kultivierungstechnologie, Wädenswil, Switzerland, October 5–6

    Google Scholar 

  • Brecht R (2007) Disposable Bioreactor Technologies: Challenges and Trends in cGMP Manufacturing. Presented at the BioProduction 2007, Berlin, Germany, October 29–31

    Google Scholar 

  • Bruce MP, Boyd V, Duch C, White JR (2002) Dialysis-based bioreactor systems for the production of monoclonal antibodies — alternatives to ascites production in mice. J Immun Meth 264:59–68

    Google Scholar 

  • Cabrita GJM, Ferreira BS, da Silva CL, Goncaalves, Almeida-Porada G, Cabrai JMS (2003) Hematopoietic stem cells: From the bone to the bioreactor. Tibtech 21:233–240

    Google Scholar 

  • Castillo J, Vanhamel S (2007) Cultivating anchorage-dependent cells. GEN 27:40–41

    Google Scholar 

  • Chaudhuri JB, Al-Rubeai (2005) Bioreactors for Tissue Engineering. Kluwer, Dordrecht

    Google Scholar 

  • Chen X, Xu H, Wan C, McCaigue M, Li G (2006) Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells (online) doi:10.1634/stemcells.2005–0591

    Google Scholar 

  • Chmiel H (2006) Bioreaktoren. In: Chmiel H (ed) Bioprozesstechnik. Elsevier, München, pp 195–215

    Google Scholar 

  • Christi Y (2000) Animal-cell damage in sparged bioreactors. Tibtech 18:420–432

    Google Scholar 

  • Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    PubMed  Google Scholar 

  • CorCell (2003) Expansion of umbilical cord blood stem cells. http://www.corcell.com. Cited 14 January 2006

  • Cowger NL, O’Connor KC, Hammond TG, Lacks DJ, Navar GL (1999) Characterization of bimodal cell death of insect cells in a rotating-wall vessel and shaker flask. Biotechnol Bioeng 64:14–26

    PubMed  Google Scholar 

  • Darling EM, Athanasiou KA (2003) Articular cartilage bioprocesses and bioreactors. Tissue Eng 9:9–26

    PubMed  Google Scholar 

  • Dean RC Jr, Karkare SB, Ray NG, Runstadler PW Jr, Venkatasubramanian K (1987) Large-scale culture of hybridoma and mammalian cells in fluidized bed bioreactors. Ann NY Acad Sci 506:129–146

    PubMed  Google Scholar 

  • DeJesus M, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM (2004) TubeSpin satellites: A fast track approach for process development with animal cells using shaking technology. Biochem Eng 17:217–223

    Google Scholar 

  • DePalma A (2002) Options for anchorage-dependent cell culture. GEN 22:58–62

    Google Scholar 

  • DePalma A (2004) Biomanufacturers face cell culture decisions. GEN 24:52–53

    Google Scholar 

  • DePalma A (2005) Integration disposables into biomanufacturing. GEN 25:50–56

    Google Scholar 

  • DePalma A (2006) Bright sky for single-use bioprocess products. GEN 26:50–57

    Google Scholar 

  • Dowd JE, Weber I, Rodriguez B, Piret JM, Kwok KE (1999) Predictive control of hollow fiber bioreactors for the production of monoclonal antibodies. Biotechnol Bioeng 63:484–492

    PubMed  Google Scholar 

  • Eibl D, Eibl R (2005) Einwegkultivierungstechnologie für biotechnische Pharma-Produktionen. BioWorld 3: Supplement Swiss BioteCHnet

    Google Scholar 

  • Eibl D, Eibl R (2004) Reaktorsysteme für die Herstellung von biopharmazeutischen Proteinwirkstoffen: Quo vadis? In: iba (ed) Proceedings zum 12. Heiligenstädter Kolloquium, Heiligenstadt, Germany, pp 271–279

    Google Scholar 

  • Eibl R, Rutschmann K, Lisica L, Eibl D (2003) Kosten reduzieren durch Einwegreaktoren? BioWorld 5:22–23

    Google Scholar 

  • Eibl R, Eibl D (2006a) Disposable bioreactors for pharmaceutical research and manufacturing. Proceedings of the Second International Conference on Bioreactor Technology in Cell, Tissue Culture and Biomedical Applications, Saariselkä, March 27–31, pp 12–21

    Google Scholar 

  • Eibl R, Eibl D (2006b) Disposable bioreactors for inoculum production and protein expression. In: Pörtner R (ed) Animal Cell Biotechnology. Humana Press, Totowa, pp 321–335

    Google Scholar 

  • Eibl R, Eibl D (2007) Disposable bioreactors for cell culture based-bioprocessing, Achema Worldwide News:8–10

    Google Scholar 

  • Falkenberg FW (1998) Production of monoclonal antibodies in the miniPerm bioreactor: Comparison with other hybridoma culture methods. Res Immunol 6:560–570

    Google Scholar 

  • Falkowitz K, Staggert J, Wedege V (2006) A system approach to improving yields in a disposable bioreactor. BioProcess Int 6:56–59

    Google Scholar 

  • Fenge C, Lüllau E (2006) Cell culture bioreactors. In: Ozturk SS, Hu WS (eds) Cell Culture Technology for Pharmaceutical and Cell-based Therapies. CRC Press, New York, pp 155–224

    Google Scholar 

  • Flanagan N (2007) Disposables reach out to new markets. GEN 27:38–39

    Google Scholar 

  • Fries S, Glazomitsky K, Woods A, Forrest G, Hsu A, Olewinski R, Robinson D, Chartrain M (2005) Evaluation of disposable bioreactors. BioProcess International 10(Supplement):36–44

    Google Scholar 

  • Frison A, Memmert K (2002) Fed-batch process for mab production. GEN 22:64–66

    Google Scholar 

  • Gerlach JC (1996) Development of a hybrid liver support system: A review. Int J Artif Organs 19:645–654

    PubMed  Google Scholar 

  • Glaser V (2004) Bioreactor and fermentor technology trends. GEN 24:48–50.

    Google Scholar 

  • Glaser V (2005) Disposable bioreactors become standard fare. GEN 25:80–81

    Google Scholar 

  • Glaser V (2006) Whither steel & glass in a disposable age. GEN 26:62–65

    Google Scholar 

  • Goffe RA, Shi JY, Ngyen AKC (1995) Medium additives for high performance cell culture in hollow fiber bioreactors. In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animal Cell Technology: Development Towards the 21st Century. Kluwer, Dordrecht, pp 187–191

    Google Scholar 

  • Gokorsch S, Nehring D, Grottke C, Czermak P (2004) Hydrodynamic stimulation and long term cultivation of nucleus pulposus cells: A new bioreactor system to induce extracellular matrix synthesis by nucleus pulposus cells dependent on intermittent hydrostatic pressure. Int J Artif Organs 27:962–970

    PubMed  Google Scholar 

  • Gomes MW, Reis RL (2004) Tissue engineering: Key elements and some trends. Macromol Biosci 4:737–742

    PubMed  Google Scholar 

  • Griffiths JB (1999) Mammalian cell culture reactors, Scale-up. In: Flickinger MC, Drew SW (eds) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, vol 3. Wiley VCH, New York, pp 1594–1607

    Google Scholar 

  • Griffiths JB (2000) Animal cell products, overview. In: Spier RE (ed) Encyclopedia of Cell Technology, vol 1. Wiley VCH, New York, pp 70–76

    Google Scholar 

  • Groot CAMV (1995) Microcarrier technology, present status and perspective. In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animal Cell Technology: Developments Toward the 21st Century. Kluwer, Dordrecht, pp 899–905

    Google Scholar 

  • Guardia MJ Hu WS (1999) Mammalian cell bioreactors. In: Flickinger MC, Drew SW (eds) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, vol 3. Wiley VCH, New York, pp 1587–1594

    Google Scholar 

  • Guo XM, Zhao YS, Chang HX, Wang CY, E LL, Zhang XA, Duan CM, Dong LZ, Jiang H, Li J, Song Y, Yang XJ (2006) Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113:2229–2237

    PubMed  Google Scholar 

  • Haughney H, Aranha H (2003) A novel aseptic connection device: Considerations for use in aseptic processing of pharmaceuticals. Pharm Technol: Reprint

    Google Scholar 

  • Heidemann R, Riese U, Lutkemeyer D, Buntemeyer H, Lehmann J (1994) The Super-Spinner: A low cost animal cell culture bioreactor for the CO2 incubator. Cytotechnol 14:1–9

    Google Scholar 

  • Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE (2000) New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6:75–79

    PubMed  Google Scholar 

  • Houtzager E, van der Linden R, de Roo G, Huurman S, Priem P, Sijmons PC (2005) Linear scaleup of cell cultures. The next level in disposable bioreactor design. BioProcess Int 6:60–66

    Google Scholar 

  • Howaldt M, Walz F, Kempken R (2006) Kultur von Tierzellen. In: Chmiel H (ed) Bioprozesstechnik. Elsevier, München, pp 323–359

    Google Scholar 

  • Huang W (2005) The shrinking biomanufacturing facility. GEN 25:42–46

    Google Scholar 

  • Hundt B, Best C, Schlawin N, Kassner H, Genzel Y, Reichl U (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave® Bioreactor microcarrier culture in 1–10L scale. Vaccine 25:3987–3995

    PubMed  Google Scholar 

  • Jackson LR, Trudel MJ, Lipman NS (1999) Small-scale monoclonal antibody production in vitro: Methods and resources. Lab Anim 28:38–50

    Google Scholar 

  • Jasmund I, Bader A (2002) Bioreactor developments for tissue engineering applications by the example of the bioartificial liver. Adv Biochem Eng Biotechnol 74:99–109

    PubMed  Google Scholar 

  • Kang SH, Lee GM, Kim BG (2000) Justification of continuous packed-bed reactor for retroviral production from amphotropic ŲCRIP murine producer cell. Cytotechnol 34:151–158

    Google Scholar 

  • Kieran PM, Malone DM, MacLoughlin PF (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. In: Schügerl K, Kretzmer G (eds) Influence of Stress on Cell Growth and Product Formation, vol 67. Springer, Berlin Heidelberg New York, pp 139–177

    Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    Google Scholar 

  • Kompier R, Kislev N, Segal I, Kadouri A (1991) Use of a stationary bed reactor and serum free medium for the production of recombinant proteins in insect cells. Enzyme Microb Technol 13:822–827

    PubMed  Google Scholar 

  • Krahe M (2000) Biochemical Engineering. Reprint from Ullmann’s Encyclopedia of Industrial Chemistry

    Google Scholar 

  • Kranjac D (2004) Validation of bioreactors: Disposable vs. reusable. BioProcess International. Industry Yearbook:2

    Google Scholar 

  • Kretzmer G (2002) Industrial processes with animal cells. Appl Microbiol Biotechnol 59:135–142

    PubMed  Google Scholar 

  • Kullig KM, Vacanti JP (2004) Hepatitic tissue engineering. Transpl Immunol 12:303–310

    Google Scholar 

  • Kumar S, Wittmann C, Heinzle E (2004) Minibioreactors. Biotechnol Lett 26:1–10

    PubMed  Google Scholar 

  • Kunas K (2005) Stirred tank single-use bioreactor: Comparison to traditional stirred bioreactor. Vortrag Biotechnika 2005, Hannover, Germany, October 18–20

    Google Scholar 

  • Kunz B, Marx B, Glover K (2005) Klassifikationssystem für Fermentationsprozesse. Chem Ing Tech 77:711–721

    Google Scholar 

  • Labecki M, Bowden B, Piret J (1996) Two dimensional analysis of protein transport in the extracapillary space of hollow-fibre bioreactors. Chem Eng Sci 51:4197–4213

    Google Scholar 

  • Langhammer S, Brecht R, Marx U (2007) Novel bioreactors for fragile proteins. GEN 27:34

    Google Scholar 

  • Larcher Y, Oram G, Misener L, Tommasini R, Hagg R (2006) Advanced systems for automated tissue engineering. http://www.millenium-biologix.com/Html/scientificpapers/ACTES_C.html. Cited 14 January 2006

  • Legallais C, Dore E, Paullier P (2000) Design of a fluidized bed bioartificial liver. Int J Artif Organs 24:519–525

    Google Scholar 

  • Lehmann J, Vorlop J, Büntemeyer H (1998) Bubble-free reactors and their development for continuous culture with cell recycle. In: Spier RE, Griffiths JB (eds) Animal Cell Biotechnology, vol 3. Academic Press, New York, pp 221–237

    Google Scholar 

  • Lindl T (2002) Zell- und Gewebekultur. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Liszewsky K (2006) Biomanufacturing for regenerative medicine. GEN 26:38–41.

    Google Scholar 

  • Looby D, Racher A, Griffiths JB, Dowsett AB (1990) The immobilisation of animal cells in fixed and fluidized bed porous sphere bioreactors. In: De Bont JAM, Visser J, Mattiasson B, Tramper J (eds) Physiology of Immobilized Cells. Elsevier, Amsterdam, pp 255–246

    Google Scholar 

  • Lundgren B, Blüml G (1998) Microcarriers in cell culture production. In: Subramanian G (ed) Bioseparation and Bioprocessing, vol 2. Wiley-CH, Weinheim, pp 165–222

    Google Scholar 

  • Lyons E, Pandit A (2004) Design of bioreactors for cardiovascular applications. In: Ashammakhi N, Reis RL (eds) Topics in Tissue Engineering, vol 2. EXPERTISSUES e-book, pp 2–32

    Google Scholar 

  • Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, Gray M, Farley M, Kaplan D, Vunjak-Novakovic G (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27:6138–6149

    PubMed  Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Tibtech 22:80–86

    Google Scholar 

  • Marx U (1998) Membrane-based cell culture technologies: A scientifically economically satisfactory alternative malignant ascites production for monoclonal antibodies. Res Immunol 6:557–559

    Google Scholar 

  • McArdle J (2004) Report of the workshop on monoclonal antibodies. ATLA 32, Supplement 1:119–122

    Google Scholar 

  • Meier SJ, Hatton TA, Wang DIC (1999) Cell death from bursting bubbles: Role of cell attachment to rising bubbles in sparged reactors. Biotechnol Bioeng 62:468–478

    PubMed  Google Scholar 

  • Meis P, Peltier J, Blumenthals I, Amanullah A (2005) Evaluation of the CellFerm-Pro STBR system. GEN 25:50–52

    Google Scholar 

  • Menkel F (1992) Einführung in die Technik von Bioreaktoren. Oldenbourg Verlag, München, pp 13–15

    Google Scholar 

  • Merchuk JC, Gluz M (1999) Bioreactors: Air-lift reactors. In: Flickinger MC, Drew SW (eds) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalyis and Bioseparation, vol 1. Wiley VCH, New York, pp 320–353

    Google Scholar 

  • Meuwly F, Loviat F, Ruffieux PA, Bernard AR, Kadouri A, von Stockar U (2005) Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel disks. Biotechnol Bioeng 93:791–800

    Google Scholar 

  • Minuth WW, Strehl R, Schumacher K (2003) Zukunftstechnologie Tissue Engineering. Wiley VCH, Weinheim

    Google Scholar 

  • Morrow KJ (2006) Disposable bioreactors gaining favor. GEN 26:42–45

    Google Scholar 

  • Morrow KJ (2007) Improving protein production strategies. GEN 28:37–39

    Google Scholar 

  • Moser A (1981) Bioprozesstechnik. Springer Verlag, Wien, pp 57–58

    Google Scholar 

  • Müller M, Derouazi M, Van Tilborgh F, Wulhfard S, Hacker DL, Jordan M, Wurm FM (2006) Scalable transient gene expresssion in Chinese hamster ovary cells in instrumented and noninstrumented cultivation systems. Biotechnol Lett (online) doi:10.1007/s10529-006-9298-x

    Google Scholar 

  • Müller S (2001) Kultivierung von HEK-U293 Zellen als Suspensionskultur im miniPerm Bioreaktor. In Vitro News 1:4

    Google Scholar 

  • Negrete A, Kotin RM (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. J Virol 145:155–161

    Google Scholar 

  • Nielsen LK (1999) Bioreactor for hematopoietic cell culture. Annu Rev Biomed Eng 1:129–152

    PubMed  Google Scholar 

  • Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnol 50:9–33

    Google Scholar 

  • Nilsson K, Buzsaky F, Mosbach K (1986) Growth of anchorage dependent cells on macroporous microcarrier. Biotechnol 4:989–990

    Google Scholar 

  • Odum J (2005) Trends in Biopharmaceutical Manufacturing Facility Design: What’s Hot! Pharmaceutical Engineering 25: Reprint

    Google Scholar 

  • Ohyabu Y, Kida N, Kojima H, Taguchi T, Tanaka J, Uemura T (2006) Cartilaginous tissue formation from bone marrow using rotating wall vessel (RWV) bioreactor. Biotechnol. Bioeng. 95:1003–1008

    PubMed  Google Scholar 

  • Okamura A, Zheng YW, Hirochika R, Tanaka J, Taniguchi H (2007) In-vitro reconstitution of hepatic tissue architecture with neonatat mouse liver cells using three-dimensional culture. J Nanosci Nanotechnol 7:721–725

    PubMed  Google Scholar 

  • Ozturk SS (2006) Cell culture technology — An Overview. In: Ozturk SS, Hu WS (eds) Cell Culture Technology for Pharmaceutical and Cell-Based Therapies. CRC Press, New York, pp 1–14

    Google Scholar 

  • Ozturk SS (2007) Comparison of product quality: Disposable and stainless steel bioreactor. Presented at the BioProduction 2007, Berlin, Germany, October 29–31

    Google Scholar 

  • Pàca J (1987) Bioreaktoren. In: Weide H, Pàca J (eds) Biotechnologie. Gustav Fischer Verlag, Jena, pp 125–175

    Google Scholar 

  • Petrossian A, Cortessis GP (1990) Large-scale production of monoclonal antibodies in defined serum-free media in airlift bioreactors. Biotechniques 8:414–422

    PubMed  Google Scholar 

  • Pierce LN, Shabram PW (2004) Scalability of a disposable bioreactor from 12–500L run in perfusion mode with a CHO-based cell line: A tech review. BioProcessing J 3:1–6

    Google Scholar 

  • Prenosil JE, Villeneuve PE (1998) Automated production of cultured epidermal autografts and sub-confluent epidermal autografts in a computer controlled bioreactor. Biotechnol Bioeng 59:679–683

    PubMed  Google Scholar 

  • Purdue GF, Hunt JL, Still JM, Law EJ, Herndon DN, Goldfarb W, Schiller WR, Hansbrough JF, Hickerson WL, Himel HN, Kealey GP, Twomey J, Missavage AE, Solem LD, Davis M, Totoritis M, Gentzkow GD (1997) A multicenter clinical trial of a biosynthetic skin replacement, Dermagraft-TC*, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wound. J Burn Care Rehab 18:52–57

    Google Scholar 

  • Puskeiler R, Kaufmann K, Weuster-Botz (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–513

    PubMed  Google Scholar 

  • Puskeiler R, Weuster-Botz D (2004) Rührkesselreaktoren im mL-Massstab: Kultivierung von Escherichia coli. Chem Ing Tech 76:1865–1869

    Google Scholar 

  • Pörtner R (2006) Bioreaktoren und Bioprozesstechnik. Chem Ing Tech 78:1129–1131

    Google Scholar 

  • Pörtner R, Giesse G (2007) An overview on bioreactor design, prototyping and process control for reproducible three-dimensional tissue culture. In: Marx U, Sandig V (eds) Drug Testing In Vitro: Breakthrough and Trends in Cell Culture Technology, Wiley-VCH, Weinheim, pp 53–78

    Google Scholar 

  • Ratcliffe A, Niklason LE (2002) Bioreactors and bioprocessing for tissue engineering. Annals New York Academy of Sciences 961:210–215

    Google Scholar 

  • Safinia L, Panoskaltsis N, Mantalaris A (2005) Haematopoietic culture systems. In: Chaudhuri JB, Al-Rubeai (eds) Bioreactors for tissue engineering, Kluwer, Dordrecht, pp 309–334

    Google Scholar 

  • Schneider F (2004) Disposable Spinner und Kultivierungssysteme für die Zellkultur. Workshop, Disposable Kultivierungstechnologie, Wädenswil, Switzerland, October 5–6

    Google Scholar 

  • Scott LE, Aggett H, Glencross DK (2001) Manufacture of pure monoclonal antibodies by heterogeneous culture without downstream purification. Biotechniques 31:666–668

    PubMed  Google Scholar 

  • Schügerl K (1980) Neue Bioreaktoren für aerobe Prozesse. Chem Ing Tech 52:951–965

    Google Scholar 

  • Schwander E, Rasmusen H (2005) Scaleable, controlled growth of adherent cells in a disposable, multilayer format. GEN 25:29

    Google Scholar 

  • Senker J, Mahdi S (2003) Human tissue-engineered products: Research activities and future developments of human tissue engineering in Europe and the US. http://lifesciences.jrc.es/docs/TE_WP3_FinalReport.pdf. Cited 14 January 2006

  • Sinclair A, Monge M (2004) Biomanufacturing for the 21st century: Designing a concept facility based on single-use systems. BioProcess International 10(Supplement):26–31

    Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced motion. Cytotechnol 30(1/3):149–158

    Google Scholar 

  • Song K, Yang Z, Liu T, Zhi W, Li X, Deng L, Cui Z, Ma X (2006) Fabrication and detection of tissue-engineered bones with bio-derived scaffolds in a rotating bioreactor. Biotechnol Appl Biochem 45:65–74

    PubMed  Google Scholar 

  • Stadler EL (1998) Dual purpose fermentor and bioreactor? A capital quandary! Pharmaceutical Engineering 18: Reprint

    Google Scholar 

  • Suck K, Behr L, Fischer M, Hoffmeister H, van Griensven M, Stahl F, Scheper T, Kasper C (2006) Cultivation of MC3T3-E1 cells on a newly developed material (Sponceram®) using a rotating bed system bioreactor. J Biomed Mater Res A 80(2):268–275

    Google Scholar 

  • Tang YJ, Ohashi R, Hamel JF (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG2a monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23:255–264

    PubMed  Google Scholar 

  • Thermo Fisher Scientific (2007) Scale comparison of the Thermo Scientific Hyclone 50L Single-Use Bioreactor for SP2/0 cell culture. Application note:AN003 Rev 1

    Google Scholar 

  • Trebak M, Chong JM, Herlyn D, Speicher DW (1999) Efficient laboratory-scale production of monoclonal antibodies using membrane-based high density cell culture technology. J Immun Meth 230:59–70

    Google Scholar 

  • Tzanakakis ES, Verfaillie CM (2006) Advances in adult stem cell culture. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, New York, pp 693–721

    Google Scholar 

  • Ulloa-Montoya F, Verfaille CM, Hu WS (2006) Review: Culture systems for pluripotent stem cells. J Bioeng Biosci 100(1): 12–27

    Google Scholar 

  • Varley J, Birch J (1999) Reactor design for large scale suspension animal cell culture. Cytotechnol 29:177–205

    Google Scholar 

  • Voss H (1991) Fermentationstechnik und Aufarbeitung. In: Ruttloff H (ed) Lebensmittelbiotechnologie: Entwicklung und Aufarbeitung. Akademie Verlag, Berlin, pp 28–64

    Google Scholar 

  • Walsh G (2005) Current status of biopharmaceuticals: Approved products and trends in approvals. In: Knäblein J (ed) Modern biopharmaceuticals, vol 1. Wiley-VCH, Weinheim, pp 1–34

    Google Scholar 

  • Walsh G (2003) Biopharmaceuticals: Biochemistry and biotechnology. Wiley, The Atrium, Southern Gate, Chichester, West Sussex

    Google Scholar 

  • Wang D, Liu W, Han B, Xu R (2005) The bioreactor: A powerful tool for large-scale culture of animal cells. Curr Pharmaceut Biotechnol 6:397–403

    Google Scholar 

  • Wang G, Zhang W, Freedmann D, Eppstein L, Kadouri A (1992) Continuous production of monoclonal antibodies in Celligen packed bed bioreactor using Fibra-Cell carier. In Spier RE, Griffiths JB, Mac Donald C (eds) Animal Cell Technology: Development, Process and Products. Butterworth-Heinemann, Oxford, pp 460–464

    Google Scholar 

  • Wang MD, Yang M, Huzel N, Butler M (2002) Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotech Bioeng 77:194–203

    Google Scholar 

  • Weber W, Weber E, Geisse S, Memmert K (2001) Optimization of protein expression and establishment of the Wave Bioreactor for baculovirus/insect cell culture. Cytotechnol 38:77–85

    Google Scholar 

  • Whiteside JP, Spier RE (2004) The scale-up from 0.1 to 100 liter of a unit process system based on 3-mm-diameter glass spheres for the production of four strains of FMD from BHK monolayer cells. Biotechnol Bioeng 23:551–565

    Google Scholar 

  • Wurm FM (2005) Manufacture of recombinant biopharmaceutical proteins by cultivated mammalian cells in bioreactors. In: Knäblein J (ed) Modern Biopharmaceuticals, vol 3. Wiley VCH, Weinheim, pp 723–759

    Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1397

    PubMed  Google Scholar 

  • Wurm FM (2007) Novel technologies for rapid and low cost provisioning of antibodies and process details in mammalian cell culture based biomanufacturing. Presented at the BioProduction 2007, Berlin, Germany, October 29–31

    Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Scheper T (ed) Advances in Biochemical Engineering/Biotechnology, vol 72. Springer, Berlin Heidelberg New York, pp 1–26

    Google Scholar 

Complementary Reading

  • BioProcess International (2004) The Disposable Option: Supplement Series

    Google Scholar 

  • BioProcess International (2005) Disposables: Supplement Series

    Google Scholar 

  • Chauduri J, Al-Rubeai M (2006) Bioreactors for Tissue Engineering. Kluwer, Dordrecht

    Google Scholar 

  • Freshney RI, Stacey GN, Auerbach Jm (2007) Culture of Human Stem Cells. Wiley, Hoboken, New Jersey

    Google Scholar 

  • Vunjak-Novakovic G, Freshney RI (2006) Culture of Cells for Tissue Engineering. Wiley, Hoboken, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eibl, D., Eibl, R. (2009). Bioreactors for Mammalian Cells: General Overview. In: Cell and Tissue Reaction Engineering. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68182-3_3

Download citation

Publish with us

Policies and ethics