Skip to main content

Ig Superfamily Cell Adhesion Molecules in the Brain

  • Chapter
Book cover Cell Adhesion

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 165))

Abstract

Cell adhesion molecules of the immunoglobulin superfamily (IgSF CAMs) were discovered 25 years ago based on their role in cell-cell adhesion. Ever since, they have played a major role in developmental neuroscience research. The elucidation of IgSF CAM structure and function has been tightly linked to the establishment of new areas of research. Over the years, our view of the role of the IgSF CAMs has changed. First, they were thought to provide “specific glue” segregating subtypes of cells in the nervous system. Soon it became clear that IgSF CAMs can do much more. The focus shifted from simple adhesion to CAM-associated signaling that was shown to be involved in the promotion of axon growth and the regulation of cell migration. From there it was a small step to axon guidance, a field that has been given a lot of attention during the last decade. More recently, the involvement of IgSF CAMs in synapse formation and maturation has been discovered, although this last step in the formation of neural circuits was thought to be the domain of other families of cell adhesion molecules, such as the neuroligins, the neurexins, and the cadherins. Certainly, the most striking discovery in the context of IgSF CAMs has been the diversity of signaling mechanisms that are associated with them. The versatility of signals and their complexity make IgSF CAMs a perfect tool for brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C (2000) Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development 127:1359–1372

    CAS  PubMed  Google Scholar 

  • Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S (1999) BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24:127–141

    CAS  PubMed  Google Scholar 

  • Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    CAS  PubMed  Google Scholar 

  • Bailey CH, Chen M, Keller F, Kandel ER (1992) Serotonin-mediated endocytosis of ap-CAM: an early step of learning-related synaptic growth in Aplysia. Science 256:645–649

    CAS  PubMed  Google Scholar 

  • Bentley D, O’Connor TP (1992) Guidance and steering of peripheral pioneer growth cones in grasshopper embryos. In: Letourneau PC, Kater SB, Macagno ER (eds) The nerve growth cone. Raven Press, New York, pp 265–282

    Google Scholar 

  • Berglund EO, Murai KK, Fredette B, Sekerkova G, Marturano B, Weber L, Mugnaini E, Ranscht B (1999) Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron 24:739–750

    CAS  PubMed  Google Scholar 

  • Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) Syn-CAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531

    CAS  PubMed  Google Scholar 

  • Bizzoca A, Virgintino D, Lorusso L, Buttiglione M, Yoshida L, Polizzi A, Tattoli M, Cagiano R, Rossi F, Kozlov S, Furley A, Gennarini G (2003) Transgenic mice expressing F3/contactin from the TAG-1 promoter exhibit developmentally regulated changes in the differentiation of cerebellar neurons. Development 130:29–43

    CAS  PubMed  Google Scholar 

  • Bliss T, Errington M, Fransen E, Godfraind JM, Kauer JA, Kooy RF, Maness PF, Furley AJ (2000) Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Curr Biol 10:1607–1610

    CAS  PubMed  Google Scholar 

  • Bovolenta P, Dodd J (1990) Guidance of commissural growth cones at the floor plate in embryonic rat spinal cord. Development 109:435–447

    CAS  PubMed  Google Scholar 

  • Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30:385–397

    CAS  PubMed  Google Scholar 

  • Brackenbury R, Thiery JP, Rutishauser U, Edelman GM (1977) Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem 252:6835–6840

    CAS  PubMed  Google Scholar 

  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    CAS  PubMed  Google Scholar 

  • Brummendorf T, Hubert M, Treubert U, Leuschner R, Tarnok A, Rathjen FG (1993) The axonal recognition molecule F11 is a multifunctional protein: specific domains mediate interactions with Ng-CAM and restrictin. Neuron 10:711–727

    CAS  PubMed  Google Scholar 

  • Buchstaller A, Kunz S, Berger P, Kunz B, Ziegler U, Rader C, Sonderegger P (1996) Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion. J Cell Biol 135:1593–1607

    CAS  PubMed  Google Scholar 

  • Buttiglione M, Revest JM, Pavlou O, Karagogeos D, Furley A, Rougon G, Faivre-Sarrailh C (1998) A functional interaction between the neuronal adhesion molecules TAG-1 and F3 modulates neurite outgrowth and fasciculation of cerebellar granule cells. J Neurosci 18:6853–6870

    CAS  PubMed  Google Scholar 

  • Castellani V, Rougon G (2002) Control of semaphorin signaling. Curr Opin Neurobiol 12:532–541

    CAS  PubMed  Google Scholar 

  • Castellani V, Chedotal A, Schachner M, Faivre-Sarrailh C, Rougon G (2000) Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27:237–249

    CAS  PubMed  Google Scholar 

  • Charles P, Tait S, Faivre-Sarrailh C, Barbin G, Gunn-Moore F, Denisenko-Nehrbass N, Guennoc AM, Girault JA, Brophy PJ, Lubetzki C (2002) Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr Biol 12:217–220

    CAS  PubMed  Google Scholar 

  • Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20:1446–1457

    CAS  PubMed  Google Scholar 

  • Chen ZL, Yoshida S, Kato K, Momota Y, Suzuki J, Tanaka T, Ito J, Nishino H, Aimoto S, Kiyama H, et al (1995) Expression and activity-dependent changes of a novel limbicserine protease gene in the hippocampus. J Neurosci 15:5088–5097

    CAS  PubMed  Google Scholar 

  • Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S, et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455–459

    CAS  PubMed  Google Scholar 

  • Crossin KL, Krushel LA (2000) Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev Dyn 218:260–279

    CAS  PubMed  Google Scholar 

  • Davis GW, Schuster CM, Goodman CS (1997) Genetic analysis of the mechanisms controlling target selection: target-derived Fasciclin II regulates the pattern of synapse formation. Neuron 19:561–573

    CAS  PubMed  Google Scholar 

  • Denaxa M, Chan CH, Schachner M, Parnavelas JG, Karagogeos D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128:4635–4644

    CAS  PubMed  Google Scholar 

  • Dickson BJ (2001) Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11:103–110

    CAS  PubMed  Google Scholar 

  • Doherty P, Fruns M, Seaton P, Dickson G, Barton CH, Sears TA, Walsh FS (1990) A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature 43:464–466

    Google Scholar 

  • Doherty P, Williams G, Williams EJ (2000) CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci 16:283–295

    CAS  PubMed  Google Scholar 

  • Dunican DJ, Doherty P (2000) The generation of localized calcium rises mediated by cell adhesion molecules and their role in neuronal growth cone motility. Mol Cell Biol Res Commun 3:255–263

    CAS  PubMed  Google Scholar 

  • Falk J, Bonnon C, Girault JA, Faivre-Sarrailh C (2002) F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell 94:327–334

    CAS  PubMed  Google Scholar 

  • Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA (1997) Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386:796–804

    CAS  PubMed  Google Scholar 

  • Fitzgerald M, Kwiat GC, Middleton J, Pini A (1993) Ventral spinal cord inhibition of neurite outgrowth from embryonic rat dorsal root ganglia. Development 117:1377–1384

    CAS  PubMed  Google Scholar 

  • Fitzli D, Stoeckli ET, Kunz S, Siribour K, Rader C, Kunz B, Kozlov SV, Buchstaller A, Lane RP, Suter DM, Dreyer WJ, Sonderegger P (2000) A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J Cell Biol 149:951–968

    CAS  PubMed  Google Scholar 

  • Fransen E, Lemmon V, Van Camp G, Vits L, Coucke P, Willems PJ (1995) CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. Eur J Hum Genet 3:273–284

    CAS  PubMed  Google Scholar 

  • Freigang J, Proba K, Leder L, Diederichs K, Sonderegger P, Welte W (2000) The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell 101:425–433

    CAS  PubMed  Google Scholar 

  • Frotscher M (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575

    CAS  PubMed  Google Scholar 

  • Fu SY, Sharma K, Luo Y, Raper JA, Frank E (2000) SEMA3A regulates developing sensory projections in the chicken spinal cord. J Neurobiol 45:227–236

    CAS  PubMed  Google Scholar 

  • Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61:157–170

    CAS  PubMed  Google Scholar 

  • Galko MJ, Tessier-Lavigne M (2000) Function of an axonal chemoattractant modulated by metalloprotease activity. Science 289:1365–1367

    CAS  PubMed  Google Scholar 

  • Garner CC, Zhai RG, Gundelfinger ED, Ziv NE (2002) Molecular mechanisms of CNS synaptogenesis. Trends Neurosci 25:243–251

    CAS  PubMed  Google Scholar 

  • Gennarini G, Durbec P, Boned A, Rougon G, Goridis C (1991) Transfected F3/F11 neuronal cell surface protein mediates intercellular adhesion and promotes neurite outgrowth. Neuron 6:595–606

    CAS  PubMed  Google Scholar 

  • Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72Suppl: 77–98

    PubMed  Google Scholar 

  • Goodman CS, Bastiani MJ, Doe CQ, du Lac S, Helfand SL, Kuwada JY, Thomas JB (1984) Cell recognition during neuronal development. Science 225:1271–1279

    CAS  PubMed  Google Scholar 

  • Guthrie S (2001) Axon guidance: Robos make the rules. Curr Biol 11: R300–303

    CAS  PubMed  Google Scholar 

  • Gutwein P, Oleszewski M, Mechtersheimer S, Agmon-Levin N, Krauss K, Altevogt P (2000) Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275:15490–15497

    CAS  PubMed  Google Scholar 

  • Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Gast D, Joumaa S, Zentgraf H, Fogel M, Altevogt DP (2003) ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. Faseb J 17:292–294

    CAS  PubMed  Google Scholar 

  • Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5:939–945

    CAS  PubMed  Google Scholar 

  • Hao JC, Yu TW, Fujisawa K, Culotti JG, Gengyo-Ando K, Mitani S, Moulder G, Barstead R, Tessier-Lavigne M, Bargmann CI (2001) C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32:25–38

    CAS  PubMed  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    CAS  PubMed  Google Scholar 

  • Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663

    CAS  PubMed  Google Scholar 

  • Hivert B, Liu Z, Chuang CY, Doherty P, Sundaresan V (2002) Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol Cell Neurosci 21:534–545

    CAS  PubMed  Google Scholar 

  • Holst BD, Vanderklish PW, Krushel LA, Zhou W, Langdon RB, McWhirter JR, Edelman GM, Crossin KL (1998) Allosteric modulation of AMPA-type glutamate receptors increases activity of the promoter for the neural cell adhesion molecule, N-CAM. Proc Natl Acad Sci U S A 95:2597–2602

    CAS  PubMed  Google Scholar 

  • Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97:927–941

    CAS  PubMed  Google Scholar 

  • Hu H, Rutishauser U (1996) A septum-derived chemorepulsive factor for migrating olfactory interneuron precursors. Neuron 16:933–940

    CAS  PubMed  Google Scholar 

  • Imondi R, Wideman C, Kaprielian Z (2000) Complementary expression of transmembrane ephrins and their receptors in the mouse spinal cord: a possible role in constraining the orientation of longitudinally projecting axons. Development 127:1397–1410

    CAS  PubMed  Google Scholar 

  • Jessell TM (1988) Adhesion molecules and the hierarchy of neural development. Neuron 1:3–13

    CAS  PubMed  Google Scholar 

  • Kamiguchi H, Lemmon V (2000a) IgCAMs: bidirectional signals underlying neurite growth. Curr Opin Cell Biol 12:598–605

    CAS  PubMed  Google Scholar 

  • Kamiguchi H, Lemmon V (2000b) Recycling of the cell adhesion molecule L1 in axonal growth cones. J Neurosci 20:3676–3686

    CAS  PubMed  Google Scholar 

  • Kamiguchi H, Yoshihara F (2001) The role of endocytic l1 trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci 21:9194–9203

    CAS  PubMed  Google Scholar 

  • Kamiguchi H, Long KE, Pendergast M, Schaefer AW, Rapoport I, Kirchhausen T, Lemmon V (1998) The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci 18:5311–5321

    CAS  PubMed  Google Scholar 

  • Kaprielian Z, Imondi R, Runko E (2000) Axon guidance at the midline of the developing CNS. Anat Rec 261:176–197

    CAS  PubMed  Google Scholar 

  • Kaprielian Z, Runko E, Imondi R (2001) Axon guidance at the midline choice point. Dev Dyn 221:154–181

    CAS  PubMed  Google Scholar 

  • Kazarinova-Noyes K, Malhotra JD, McEwen DP, Mattei LN, Berglund EO, Ranscht B, Levinson SR, Schachner M, Shrager P, Isom LL, Xiao ZC (2001) Contactin associates with Na+ channels and increases their functional expression. J Neurosci 21:7517–7525

    CAS  PubMed  Google Scholar 

  • Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87:175–185

    CAS  PubMed  Google Scholar 

  • Keleman K, Dickson BJ (2001) Short-and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32:605–617

    CAS  PubMed  Google Scholar 

  • Keleman K, Rajagopalan S, Cleppien D, Teis D, Paiha K, Huber LA, Technau GM, Dickson BJ (2002) Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110:415–427

    CAS  PubMed  Google Scholar 

  • Kennedy TE (2000) Cellular mechanisms of netrin function: long-range and short-range actions. Biochem Cell Biol 78:569–575

    CAS  PubMed  Google Scholar 

  • Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    CAS  PubMed  Google Scholar 

  • Kenwrick S, Doherty P (1998) Neural cell adhesion molecule L1: relating disease to function. Bioessays 20:668–675

    CAS  PubMed  Google Scholar 

  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998a) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92:205–215

    CAS  PubMed  Google Scholar 

  • Kidd T, Russell C, Goodman CS, Tear G (1998b) Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20:25–33

    CAS  PubMed  Google Scholar 

  • Kidd T, Bland KS, Goodman CS (1999) Slit is the midline repellent for the robo receptor in Drosophila. Cell 96:785–794

    CAS  PubMed  Google Scholar 

  • Kiss JZ, Troncoso E, Djebbara Z, Vutskits L, Muller D (2001) The role of neural cell adhesion molecules in plasticity and repair. Brain Res Brain Res Rev 36:175–184

    CAS  PubMed  Google Scholar 

  • Kolkova K, Novitskaya V, Pedersen N, Berezin V, Bock E (2000) Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J Neurosci 20:2238–2246

    CAS  PubMed  Google Scholar 

  • Korey CA, Van Vactor D (2000) From the growth cone surface to the cytoskeleton: one journey, many paths. J Neurobiol 44:184–193

    CAS  PubMed  Google Scholar 

  • Kramer EM, Klein C, Koch T, Boytinck M, Trotter J (1999) Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 274:29042–29049

    CAS  PubMed  Google Scholar 

  • Kuhar SG, Feng L, Vidan S, Ross ME, Hatten ME, Heintz N (1993) Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117:97–104

    CAS  PubMed  Google Scholar 

  • Kuhn TB, Stoeckli ET, Condrau MA, Rathjen FG, Sonderegger P (1991) Neurite outgrowth on immobilized axonin-1 is mediated by a heterophilic interaction with L1(G4). J Cell Biol 115:1113–1126

    CAS  PubMed  Google Scholar 

  • Kunz B, Lierheimer R, Rader C, Spirig M, Ziegler U, Sonderegger P (2002) Axonin-1/TAG-1 mediates cell-cell adhesion by a cis-assisted trans-interaction. J Biol Chem 277:4551–4557

    CAS  PubMed  Google Scholar 

  • Kunz S, Ziegler U, Kunz B, Sonderegger P (1996) Intracellular signaling is changed after clustering of the neural cell adhesion molecules axonin-1 and NgCAM during neurite fasciculation. J Cell Biol 135:253–267

    CAS  PubMed  Google Scholar 

  • Kunz S, Spirig M, Ginsburg C, Buchstaller A, Berger P, Lanz R, Rader C, Vogt L, Kunz B, Sonderegger P (1998) Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 143:1673–1690

    CAS  PubMed  Google Scholar 

  • Landmesser L, Dahm L, Schultz K, Rutishauser U (1988) Distinct roles for adhesion molecules during innervation of embryonic chick muscle. Dev Biol 130:645–670

    CAS  PubMed  Google Scholar 

  • Lemmon V, Burden SM, Payne HR, Elmslie GJ, Hlavin ML (1992) Neurite growth on different substrates: permissive versus instructive influences and the role of adhesive strength. J Neurosci 12:818–826

    CAS  PubMed  Google Scholar 

  • Leonardo ED, Hinck L, Masu M, Keino-Masu K, Fazeli A, Stoeckli ET, Ackerman SL, Weinberg RA, Tessier-Lavigne M (1997) Guidance of developing axons by netrin-1 and its receptors. Cold Spring Harb Symp Quant Biol 62:467–478

    CAS  PubMed  Google Scholar 

  • Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, Dupuis S, Jiang ZH, Nash W, Gick C, Ornitz DM, Wu JY, Rao Y (1999) Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96:807–818

    CAS  PubMed  Google Scholar 

  • Lierheimer R, Kunz B, Vogt L, Savoca R, Brodbeck U, Sonderegger P (1997) The neuronal cell-adhesion molecule axonin-1 is specifically released by an endogenous glycosylphosphatidylinositol-specific phospholipase. Eur J Biochem 243:502–510

    CAS  PubMed  Google Scholar 

  • Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–635

    CAS  PubMed  Google Scholar 

  • Lustig M, Zanazzi G, Sakurai T, Blanco C, Levinson SR, Lambert S, Grumet M, Salzer JL (2001) Nr-CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr Biol 11:1864–1869

    CAS  PubMed  Google Scholar 

  • Luthi A, Laurent JP, Figurov A, Muller D, Schachner M (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777–779

    Google Scholar 

  • Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    CAS  PubMed  Google Scholar 

  • Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    CAS  PubMed  Google Scholar 

  • Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4:877–886

    CAS  PubMed  Google Scholar 

  • Mason C, Erskine L (2000) Growth cone form, behavior, and interactions in vivo: retinal axon pathfinding as a model. J Neurobiol 44:260–270

    CAS  PubMed  Google Scholar 

  • Matsumoto-Miyai K, Ninomiya A, Yamasaki H, Tamura H, Nakamura Y, Shiosaka S (2003) NMDA-dependent proteolysis of the presynaptic adhesion molecule L1 in the hippocampus by neuropsin. J Neurosci 23:7723–7736

    Google Scholar 

  • McFarlane S (2003) Metalloproteases: carving out a role in axon guidance. Neuron 37:559–562

    CAS  PubMed  Google Scholar 

  • McNamee CJ, Reed JE, Howard MR, Lodge AP, Moss DJ (2002) Promotion of neuronal cell adhesion by members of the IgLON family occurs in the absence of either support or modification of neurite outgrowth. J Neurochem 80:941–948

    CAS  PubMed  Google Scholar 

  • Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155:661–673

    CAS  PubMed  Google Scholar 

  • Messersmith EK, Leonardo ED, Shatz CJ, Tessier-Lavigne M, Goodman CS, Kolodkin AL (1995) Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14:949–959

    CAS  PubMed  Google Scholar 

  • Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavigne M, Poo MM (1997) cAMP-dependent growth cone guidance by netrin-1. Neuron 19:1225–1235

    CAS  PubMed  Google Scholar 

  • Morales G, Hubert M, Brummendorf T, Treubert U, Tarnok A, Schwarz U, Rathjen FG (1993) Induction of axonal growth by heterophilic interactions between the cell surface recognition proteins F11 and Nr-CAM/Bravo. Neuron 11:1113–1122

    CAS  PubMed  Google Scholar 

  • Moscoso LM, Cremer H, Sanes JR (1998) Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J Neurosci 18:1465–1477

    CAS  PubMed  Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–388

    CAS  PubMed  Google Scholar 

  • Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413–422

    CAS  PubMed  Google Scholar 

  • Murase S, Horwitz AF (2002) Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci 22:3568–3579

    CAS  PubMed  Google Scholar 

  • Myat A, Henry P, McCabe V, Flintoft L, Rotin D, Tear G (2002) Drosophila Nedd4, a ubiquitin ligase, is recruited by Commissureless to control cell surface levels of the roundabout receptor. Neuron 35:447–459

    CAS  PubMed  Google Scholar 

  • Nishiwaki K, Hisamoto N, Matsumoto K (2000) A metalloprotease disintegrin that controls cell migration in Caenorhabditis elegans. Science 288:2205–2208

    CAS  PubMed  Google Scholar 

  • O’Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK (1995) Tangential migration of neurons in the developing cerebral cortex. Development 121:2165–2176

    PubMed  Google Scholar 

  • Olive S, Dubois C, Schachner M, Rougon G (1995) The F3 neuronal glycosylphosphatidylinositol-linked molecule is localized to glycolipid-enriched membrane subdomains and interacts with L1 and fyn kinase in cerebellum. J Neurochem 65:2307–2317

    CAS  PubMed  Google Scholar 

  • Park HT, Wu J, Rao Y (2002) Molecular control of neuronal migration. Bioessays 24:821–827

    CAS  PubMed  Google Scholar 

  • Patel BN, Van Vactor DL (2002) Axon guidance: the cytoplasmic tail. Curr Opin Cell Biol 14:221–229

    CAS  PubMed  Google Scholar 

  • Pekarik V, Bourikas D, Miglino N, Joset P, Preiswerk S, Stoeckli ET (2003) Screening for gene function in chicken embryo using RNAi and electroporation. Nat Biotechnol 21:93–96

    CAS  PubMed  Google Scholar 

  • Perrin FE, Rathjen FG, Stoeckli ET (2001) Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 30:707–723

    CAS  PubMed  Google Scholar 

  • Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K, Frank M, Gordon RE, Gawinowicz MA, Zhao Y, Colman DR (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77

    CAS  PubMed  Google Scholar 

  • Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, Mason CA, Tessier-Lavigne M (2002) Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33:219–232

    CAS  PubMed  Google Scholar 

  • Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    CAS  PubMed  Google Scholar 

  • Polo-Parada L, Bose CM, Landmesser LT (2001) Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 32:815–828

    CAS  PubMed  Google Scholar 

  • Rader C, Kunz B, Lierheimer R, Giger RJ, Berger P, Tittmann P, Gross H, Sonderegger P (1996) Implications for the domain arrangement of axonin-1 derived from the mapping of its NgCAM binding site. Embo J 15:2056–2068

    CAS  PubMed  Google Scholar 

  • Rafuse VF, Polo-Parada L, Landmesser LT (2000) Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. J Neurosci 20:6529–6539

    CAS  PubMed  Google Scholar 

  • Rajagopalan S, Nicolas E, Vivancos V, Berger J, Dickson BJ (2000a) Crossing the midline: roles and regulation of Robo receptors. Neuron 28:767–777

    CAS  PubMed  Google Scholar 

  • Rajagopalan S, Vivancos V, Nicolas E, Dickson BJ (2000b) Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103:1033–1045

    CAS  PubMed  Google Scholar 

  • Rios JC, Melendez-Vasquez CV, Einheber S, Lustig M, Grumet M, Hemperly J, Peles E, Salzer JL (2000) Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 20:8354–8364

    CAS  PubMed  Google Scholar 

  • Saffell JL, Williams EJ, Mason IJ, Walsh FS, Doherty P (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18:231–242

    CAS  PubMed  Google Scholar 

  • Sakurai T, Lustig M, Babiarz J, Furley AJ, Tait S, Brophy PJ, Brown SA, Brown LY, Mason CA, Grumet M (2001) Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development. J Cell Biol 154:1259–1273

    CAS  PubMed  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    CAS  PubMed  Google Scholar 

  • Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

    CAS  PubMed  Google Scholar 

  • Schaefer AW, Kamiguchi H, Wong EV, Beach CM, Landreth G, Lemmon V (1999) Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J Biol Chem 274:37965–37973

    CAS  PubMed  Google Scholar 

  • Schimmelpfeng K, Gogel S, Klambt C (2001) The function of leak and kuzbanian during growth cone and cell migration. Mech Dev 106:25–36

    CAS  PubMed  Google Scholar 

  • Schmid RS, Graff RD, Schaller MD, Chen S, Schachner M, Hemperly JJ, Maness PF (1999) NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J Neurobiol 38:542–558

    CAS  PubMed  Google Scholar 

  • Schmid RS, Pruitt WM, Maness PF (2000) A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 20:4177–4188

    CAS  PubMed  Google Scholar 

  • Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10:409–426

    CAS  PubMed  Google Scholar 

  • Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87:1001–1014

    CAS  PubMed  Google Scholar 

  • Shen K, Bargmann CI (2003) The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112:619–630

    CAS  PubMed  Google Scholar 

  • Sheng M (2001) Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A 98:7058–7061

    CAS  PubMed  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    CAS  PubMed  Google Scholar 

  • Shirasaki R, Katsumata R, Murakami F (1998) Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279:105–107

    CAS  PubMed  Google Scholar 

  • Simpson JH, Bland KS, Fetter RD, Goodman CS (2000a) Short-range and long-range guidance by Slit and its Robo receptors: a combinatorial code of Robo receptors controls lateral position. Cell 103:1019–1032

    CAS  PubMed  Google Scholar 

  • Simpson JH, Kidd T, Bland KS, Goodman CS (2000b) Short-range and long-range guidance by slit and its Robo receptors. Robo and Robo2 play distinct roles in midline guidance. Neuron 28:753–766

    CAS  PubMed  Google Scholar 

  • Sonderegger P, Welte W, Stoeckli ET (2000) Sensing cues for axon guidance—from extracellular protein conformation to intracellular signalling. In: The ELSO Gazette: e-magazine of the European Life Scientist Organization (http://www.the-elso-gazette.org/magazines/reviews/review1.asp) Issue 1 (1 September, 2000)

    Google Scholar 

  • Song H, Poo M (2001) The cell biology of neuronal navigation. Nat Cell Biol 3: E81–88

    CAS  PubMed  Google Scholar 

  • Song HJ, Ming GL, Poo MM (1997) cAMP-induced switching in turning direction of nerve growth cones. Nature 388:275–279

    CAS  PubMed  Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50:703–710

    CAS  PubMed  Google Scholar 

  • Stein E, Tessier-Lavigne M (2001) Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291:1928–1938

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Landmesser LT (1995) Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 14:1165–1179

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Landmesser LT (1998a) Molecular mechanisms of growth cone guidance in the vertebrate nervous system. In: Sonderegger P (ed) Ig superfamily molecules in the nervous system, vol 6. Harwood Academic, Amsterdam, pp 161–181

    Google Scholar 

  • Stoeckli ET, Landmesser LT (1998b) Axon guidance at choice points. Curr Opin Neurobiol 8:73–79

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Lemkin PF, Kuhn TB, Ruegg MA, Heller M, Sonderegger P (1989) Identification of proteins secreted from axons of embryonic dorsal-root-ganglia neurons. Eur J Biochem 180:249–258

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Kuhn TB, Duc CO, Ruegg MA, Sonderegger P (1991) The axonally secreted protein axonin-1 is a potent substratum for neurite growth. J Cell Biol 112:449–455

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Ziegler U, Bleiker AJ, Groscurth P, Sonderegger P (1996) Clustering and functional cooperation of Ng-CAM and axonin-1 in the substratum-contact area of growth cones. Dev Biol 177:15–29

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Sonderegger P, Pollerberg GE, Landmesser LT (1997) Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 18:209–221

    CAS  PubMed  Google Scholar 

  • Suter DM, Pollerberg GE, Buchstaller A, Giger RJ, Dreyer WJ, Sonderegger P (1995) Binding between the neural cell adhesion molecules axonin-1 and Nr-CAM/Bravo is involved in neuron-glia interaction. J Cell Biol 131:1067–1081

    CAS  PubMed  Google Scholar 

  • Tait S, Gunn-Moore F, Collinson JM, Huang J, Lubetzki C, Pedraza L, Sherman DL, Colman DR, Brophy PJ (2000) An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol 150:657–666

    CAS  PubMed  Google Scholar 

  • Tear G, Seeger M, Goodman CS (1993) To cross or not to cross: a genetic analysis of guidance at the midline. Perspect Dev Neurobiol 1:183–194

    CAS  PubMed  Google Scholar 

  • Thiery JP, Brackenbury R, Rutishauser U, Edelman GM (1977) Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem 252:6841–6845

    CAS  PubMed  Google Scholar 

  • Tsai HH, Miller RH (2002) Glial cell migration directed by axon guidance cues. Trends Neurosci 25:173–175; discussion 175–176

    CAS  PubMed  Google Scholar 

  • Wadsworth WG (2002) Moving around in a worm: netrin UNC-6 and circumferential axon guidance in C. elegans. Trends Neurosci 25:423–429

    CAS  Google Scholar 

  • Weller S, Gartner J (2001) Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): mutations in the L1CAM gene. Hum Mutat 18:1–12

    CAS  PubMed  Google Scholar 

  • Williams EJ, Furness J, Walsh FS, Doherty P (1994a) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13:583–594

    CAS  PubMed  Google Scholar 

  • Williams EJ, Furness J, Walsh FS, Doherty P (1994b) Characterisation of the second messenger pathway underlying neurite outgrowth stimulated by FGF. Development 120:1685–1693

    CAS  PubMed  Google Scholar 

  • Wong K, Park HT, Wu JY, Rao Y (2002) Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev 12:583–591

    CAS  PubMed  Google Scholar 

  • Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400:331–336

    CAS  PubMed  Google Scholar 

  • Yamagata M, Weiner JA, Sanes JR (2002) Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110:649–660

    CAS  PubMed  Google Scholar 

  • Yee KT, Simon HH, Tessier-Lavigne M, O’Leary DM (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24:607–622

    CAS  PubMed  Google Scholar 

  • Yuan W, Zhou L, Chen JH, Wu JY, Rao Y, Ornitz DM (1999) The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev Biol 212:290–306

    CAS  PubMed  Google Scholar 

  • Zhu Y, Li H, Zhou L, Wu JY, Rao Y (1999) Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23:473–485

    CAS  PubMed  Google Scholar 

  • Zisch AH, DAlessandri L, Amrein K, Ranscht B, Winterhalter KH, Vaughan L (1995) The glypiated neuronal cell adhesion molecule contactin/F11 complexes with src-family protein tyrosine kinase Fyn. Mol Cell Neurosci 6:263–279

    CAS  PubMed  Google Scholar 

  • Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M (2000) Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102:363–375

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Stoeckli, E.T. (2004). Ig Superfamily Cell Adhesion Molecules in the Brain. In: Behrens, J., Nelson, W.J. (eds) Cell Adhesion. Handbook of Experimental Pharmacology, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68170-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68170-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20941-6

  • Online ISBN: 978-3-540-68170-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics