Skip to main content

Application Problems of Implants Used in Interventional Cardiology

  • Conference paper

Part of the book series: Advances in Soft Computing ((AINSC,volume 47))

Summary

The paper discusses application issues of using the metal implants for treatment of the cardiovascular diseases. The analysis of the biophysical conditions of the heart-coronary vessels system has been used to distinguish the tissue environment properties which should be compatible with properties of the metal biomaterial and stent surface. The need to determine the correct quality and service properties of the coronary stents has been indicated, which refer first of all to their design form, physical and chemical properties of the metal biomaterial and its surface. Based on that the Author of the work has proposed his own methodology for forming and controlling the service properties of the stents. It takes into account the required relationships between structure, and mechanical properties of the stent biomaterial, and the physical and chemical properties of its surface - adjusted to the specific features of the cardiovascular system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paszenda, Z.: Kształtowanie własności fizykochemicznych stentów wieńcowych ze stali Cr-Ni-Mo do zastosowań w kardiologii zabiegowej. Wydawnictwo Politechniki Śląskiej Gliwice (in Polish) (2005)

    Google Scholar 

  2. Paszenda, Z., Duda, B., Wilczek, P.: Investigation of haemocompatibility of the passive-carbon coatings used for improvement of the coronary stents’ surfaces. Engineering of Biomaterials 26, 3–11 (2003)

    Google Scholar 

  3. Paszenda, Z.: Issues of metal materials used for implants in interventional cardiology. Engineering of Biomaterials 21, 3–9 (2002)

    Google Scholar 

  4. Peng, T., Gibula, P., Yao, K., Goosen, M.: Role of polymers in improving the results of stenting in coronary arteries. Biomaterials 17, 685–694 (1996)

    Article  Google Scholar 

  5. Lahann, J., Klee, D.: Improvement of hemocompatibility of metallic stents by polymer coating. Journal of Materials Science: Materials in Medicine 10, 443–448 (1999)

    Article  Google Scholar 

  6. Verweire, I., Schacht, E., Qiang, B., Wang, K.: Evaluation of fluorinated polymers as coronary stent coating. Journal of Materials Science: Materials in Medicine 11, 207–212 (2000)

    Article  Google Scholar 

  7. Serruys, P., Kutryk, M.: Handbook of coronary stens. Martin Dunitz Ltd (1998)

    Google Scholar 

  8. Jaroszyk, F.: Biofizyka. Wydawnictwo Lekarskie PZWL, Warszawa (in Polish) (2001)

    Google Scholar 

  9. Huang, N., Yang, P., Cheng, X., Leng, Y.: Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials 19, 771–776 (1998)

    Article  Google Scholar 

  10. Chen, J., Leng, Y., Tian, X., Wang, L., Huang, N., Chu, P., Yang, P.: Antithrombotic investigation of surface energy and optical bandgap and haemocompatibility mechanism of titanium oxide thin films. Biomaterials 23, 2545–2552 (2002)

    Article  Google Scholar 

  11. Huang, N., Yang, P., Leng, Y., Chen, J., Sun, H., Wang, J.: Haemocompatibility of titanium oxide films. Biomaterials 24, 2177–2187 (2003)

    Article  Google Scholar 

  12. Colombo, A., Stankovic, G., Moses, J.: Selection of coronary stent. Journal of the American College of Cardiology 6, 1021–1033 (2002)

    Article  Google Scholar 

  13. Marciniak, J., Paszenda, Z., Walke, W., Tyrlik-Held, J.: Stenty w chirurgii małoinwazyjnej. Wydawnictwo Politechniki Śląskiej Gliwice (in Polish) (2006)

    Google Scholar 

  14. Serruys, P., Rensing, B.: Handbook of coronary stents. Martin Dunitz Ltd (2002)

    Google Scholar 

  15. ISO 5832-1, Implants for surgery – Metallic materials – Wrought stainless steel (2007)

    Google Scholar 

  16. EN 12006-3 Non-active surgical implants – Part 3: Intravascular devices (1998)

    Google Scholar 

  17. EN ISO 14630 Non-active surgical implants – General requirements (1997)

    Google Scholar 

  18. Popko, J., Szeparowicz, P., Sajewicz, E., Sidun, J.: Biomechanical evaluation of two cervical spine stabilization systems. Acta of Bioengineering and Biomechanics 4, 72–79 (2002)

    Google Scholar 

  19. Pezowicz, C.: Experimental investigation of cervical spine fixators. Acta of Bioengineering and Biomechanics 3, 3–13 (2001)

    Google Scholar 

  20. Pozowski, A., Będziński, R., Ścigała, K.: Stress distribution in knee after operative correction of its mechanical axix. Acta of Bioengineering and Biomechanics 3, 31–40 (2001)

    Google Scholar 

  21. Migliavacca, F., Petrini, L., Colombo, M.: Mechanical behaviour of coronary stents investigated through the finite element method. Journal of Biomechanics 35, 803–811 (2002)

    Article  Google Scholar 

  22. Chua, S., Mc Donald, B., Hashmi, M.: Finite-element simulation of stent expansion. Journal of Materials Processing Technology 120, 335–340 (2002)

    Article  Google Scholar 

  23. Zhu, H., Warner, J., Gehring, T., Friedman, M.: Comparison of coronary artery dynamics pre- and poststenting. Journal of Biomechanics 36, 689–697 (2003)

    Article  Google Scholar 

  24. Benard, N., Coisne, D., Perrault, R.: Experimental study of laminar blood flow through an artery treated by a stent implantation. Journal of Biomechanics 36, 991–998 (2003)

    Article  Google Scholar 

  25. Walke, W., Paszenda, Z.: Experimental and numerical biomechanical analysis of vascular stent. Journal of Materials Processing Technology 164-165, 1263–1268 (2005)

    Article  Google Scholar 

  26. Sheth, S., Litvak, F., Fishbein, M., Forrester, J., Eigler, N.: Reduced thrombogenicity of polished and unpolished nitinolvs stainless steel slotted-tube stents in a pig coronary artery model. Journal of the American College of Cardiology 27, 197A (1997)

    Google Scholar 

  27. De Scheerder, I., Sohier, J., Wang, K.: Metallic surface treatment using electrochemical polishing decreases thrombogenicity and neointimal hyperplasia after coronary stent implantation in a porcine model. Eurpean Heart Journal 18, 153–156 (1997)

    Google Scholar 

  28. Gunn, J., Cumberland, D.: Stent coatings and local drug delivery. European Heart Journal 20, 1693–1700 (1999)

    Article  Google Scholar 

  29. Verweire, I., Schacht, E., Qiang, B., Wang, K.: Evaluation of fluorinated polymers as coronary stent coating. Journal of Materials Science: Materials in Medicine 11, 207–212 (2000)

    Article  Google Scholar 

  30. Bertrand, O., Sipehia, R., Mongrain, R., Rodes, J., Tardif, J.: Biocompatibility aspects of new stent technology. Journal of the American College of Cardiology 32, 562–571 (1998)

    Article  Google Scholar 

  31. Christensen, K., Larsson, R., Elgue, G., Larsson, A.: Heparin coating of the stent graft – effects on platelets, coagulation and complement activation. Biomaterials 22, 349–355 (2001)

    Article  Google Scholar 

  32. Michenatzis, G.: Comparison of haemocompatibility improvement of four polymeric biomaterials by two heparinization techniques. Biomaterials 24, 677–688 (2003)

    Article  Google Scholar 

  33. Sousa, J., Morice, M., Serruys, P.: The RAVEL study – a randomized study with the sirolimus-coated BX Velocity balloon-expandable stent in the treatment of patients with de novo native coronary artery lesions. The American Heart Association Scientific Sessions, Anaheim, abstract 111305 (2001)

    Google Scholar 

  34. Grube, E., Silber, S., Hauptman, K.: Prospective, randomized, double-blind comparison of NIR stents coated with paclitaxel in a polymer carrier in de novo coronary lesions compared with uncoated controls. The American Heart Association Scientific Sessions, Anaheim, abstract 110945 (2001)

    Google Scholar 

  35. Paszenda, Z., Tyrlik-Held, J., Nawrat, Z., Żak, J., Wilczek, J.: Usefulness of passive-carbon layer for implants applied in interventional cardiology. Journal of Materials Processing Technology 157-158C, 399–404 (2004)

    Article  Google Scholar 

  36. Paszenda, Z., Tyrlik-Held, J., Jurkiewicz, W.: Investigations of antithrombogenic properties of passive-carbon layer. Journal of Achievements in Materials and Manufacturing Engineering 17(1-2), 197–200 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ewa Pietka Jacek Kawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paszenda, Z. (2008). Application Problems of Implants Used in Interventional Cardiology. In: Pietka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Soft Computing, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68168-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68168-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68167-0

  • Online ISBN: 978-3-540-68168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics