Skip to main content

Abstract

Many tasks in artificial intelligence, such as diagnosis, planning, and reconfiguration, can be framed as constraint optimization problems. However, running constraint optimization within embedded systems requires methods to curb the resource requirements in terms of memory and run-time. In this paper, we present a novel method to control the memory requirements of message-passing algorithms that decompose the problem into clusters and use dynamic programming to compute approximate solutions. It can be viewed as an extension of the previously proposed mini-bucket scheme, which limits message size simply by omitting constraints from the messages. Our algorithm instead adaptively abstracts constraints, and we argue that this allows for a more fine-grained control of resources particularly for constraints of higher arity and variables with large domains that often occur in models of technical systems. Preliminary experiments with a diagnosis model of NASA’s EO-1 satellite appear promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beetz, M., Buss, M., Wollherr, D.: Cognitive technical systems – what is the role of artificial intelligence? In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 19–42. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Bouveret, S., Heras, F., de Givry, S., Larrosa, J., Sanchez, M., Schiex, T.: Toolbar: A state-of-the-art platform for wcsp, http://www.inra.fr/mia/T/degivry/ToolBar.pdf

  3. Koster, A.: Frequency Assignment – Models and Algorithms. PhD thesis, Universiteit Maastricht, Maastricht, The Netherlands (1999)

    Google Scholar 

  4. Hayden, S.C., Sweet, A.J., Christa, S.E.: : Livingstone Model-Based Diagnosis of Earth Observing One. In: Proceedings AIAA 1st Intelligent Systems Technical Conference (September 2004)

    Google Scholar 

  5. Sturtevant, N.R., Jansen, R.: An analysis of map-based abstraction and refinement. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 344–358. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)

    Google Scholar 

  7. Sachenbacher, M., Williams, B.C.: Diagnosis as Semiring-based Constraint Optimization. In: Proceedings 16th European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp. 873–877 (2004)

    Google Scholar 

  8. El Fattah, Y., Dechter, R.: Diagnosing tree-decomposable circuits. In: Proceedings 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, Canada, pp. 1742–1749 (1995)

    Google Scholar 

  9. Kask, K., Dechter, R.: Mini-Bucket Heuristics for Improved Search. In: Proceedings 15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), Stockholm, Sweden, pp. 314–323 (1999)

    Google Scholar 

  10. O’Sullivan, B., Provan, G.M.: Approximate Compilation for Embedded Model-based Reasoning. In: Proceedings 21st National Conference on Artificial Intelligence (AAAI 2006), Boston, USA (2006)

    Google Scholar 

  11. Petcu, A., Faltings, B.: Superstabilizing, fault-containing distributed combinatorial optimization. In: Proceedings 20th National Conference on Artificial Intelligence (AAAI 2005), Pittsburgh, USA, pp. 449–454 (2005)

    Google Scholar 

  12. Holte, R., Hernadvolgyi, I.: Steps towards the automatic creation of search heuristics. Technical report, Computing Science Department, University of Alberta (2004)

    Google Scholar 

  13. Sachenbacher, M., Struss, P.: Task-dependent Qualitative Domain Abstraction. Artificial Intelligence 162(1-2), 121–143 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Laurent Perron Michael A. Trick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maier, P., Sachenbacher, M. (2008). Constraint Optimization and Abstraction for Embedded Intelligent Systems. In: Perron, L., Trick, M.A. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2008. Lecture Notes in Computer Science, vol 5015. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68155-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68155-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68154-0

  • Online ISBN: 978-3-540-68155-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics