Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 1879 Accesses

It has often been said that scientific advances are made either in a dramatic and revolutionary way, or, as in the case of the diamond anvil cell (DAC), in a slow and evolutionary manner over a period of several years. For more than 2 decades, commencing in 1958, the DAC developed stepwise from a rather crude qualitative instrument to the sophisticated quantitative research tool it is today, capable of routinely producing sustained static pressures in the multi-megabar range and readily adaptable to numerous scientific measurement techniques because of its optical accessibility, miniature size, and portability.

During the last several decades the amount and quality of research with DACs has increased enormously with new instrument modifications, new applications, and experimental results being reported in literature frequently. In fact, the DAC now has become the premier instrument of choice for conducting experiments of all kinds and in all disciplines that utilize static high pressure and temperature variables. Indeed, for static high pressure/temperature studies on energetic materials, the DAC has become a widely used indispensable tool. Never in my thoughts did I ever expect this simple, yet elegant, device to become so widely used and accepted throughout the world for conducting scientific research in many diverse disciplines. Because of its enormous popularity in the scientific community, and also because I have perceived that many scientists who use the instrument today are unaware of its origin, probably because so many different modifications of the instrument have been made and are currently in use, I think it is appropriate to narrate the history behind the invention of the DAC in the introductory chapter of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. E. Weir, E. R. Lippincott, A. Van Valkenburg, E. N. Bunting, (1959) Infrared studies in the 1-micron to 15-micron region to 30,000 atmospheres. J Res Nat Bur Stand, Sect A 63(1), 55–62.

    Google Scholar 

  2. G. J. Piermarini, C. E. Weir, (1962) A diamond cell for x-ray diffraction studies at high pressures. J Res Nat Bur Stand, Sect A 66:325–331.

    Google Scholar 

  3. C. E. Weir, (1945) Compression of sole leather. J Res Nat Bur Stand 35(4), 257–271.

    Google Scholar 

  4. C. E. Weir, (1948) Effect of temperature on the volume of leather and collagen in water. J Res Nat Bur Stand 41(4), 279–285.

    CAS  Google Scholar 

  5. C. E. Weir, (1950) High-pressure apparatus for compressibility studies and its application to measurements on leather and collagen. J Res Nat Bur Stand 45(6), 468–476.

    CAS  Google Scholar 

  6. C. E. Weir, (1954a) Compressibilites of crystalline and glassy modifications of selenium and glucose. J Res Nat Bur Stand 52(5), 247–249.

    CAS  Google Scholar 

  7. C. E. Weir, (1954b) Temperature dependence of compression of linear high polymers at high pressures. J Res Nat Bur Stand 53(4), 245–252.

    CAS  Google Scholar 

  8. C. E. Weir, L. Shartsis, (1955) Compressibility of binary alkali borate and silicate glasses at high pressures. J Am Ceram Soc 38(9), 299–306.

    Article  CAS  Google Scholar 

  9. C. E. Weir, J. D. Hoffman, (1955) Compressibilities of long-chain normal hydrocarbons. J Res Nat Bur Stand 55(6), 307–310.

    CAS  Google Scholar 

  10. L. H. Adams (Consultant to the Director) (1958) Survey of current high pressure research program at National Bureau of Standards and recommendations regarding future needs in this area. Revised November 19, 1958, NARA RG, Astin File, Box 15.

    Google Scholar 

  11. R. A. Paquin, E. Gregory (1963) Modification and calibration of a tetrahedral anvil apparatus, in Giardini AA and Lloyd EC (eds) High pressure measurement. Butterworths, Washington, DC, pp 274–285.

    Google Scholar 

  12. E. R. Lippincott, A. Van Valkenburg, C. E. Weir, E. N. Bunting, (1958) Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J Res Nat Bur Stand 61(1), 61–70.

    CAS  Google Scholar 

  13. J. C. Jamieson, (1957) Introductory studies of high-pressure polymorphism to 24,000 bars by x-ray diffraction with some comments on calcite II. J Geol 65:334–343.

    CAS  Google Scholar 

  14. P. W. Bridgman, (1952) The resistance of 72 elements, alloys and compounds to 100,000 kg/cm2. Proc Am Acad Arts Sci 81, 167–251.

    Google Scholar 

  15. P. W. Bridgman, I. Simon, (1953) Effects of very high pressures on glass. J Appl Phys 24:405–413.

    Article  CAS  Google Scholar 

  16. E. N. Bunting, A. Van Valkenburg, (1958) Some properties of diamond. Am Mineral 43:102–106.

    CAS  Google Scholar 

  17. J. C. Jamieson, A. W. Lawson, N. D. Nachtrieb, (1959) New device for obtaining x-ray diffraction patterns from substances exposed to high pressure. Rev Sci Instrum 30(11), 1016–1019.

    Article  CAS  Google Scholar 

  18. J. C. Jamieson, A. W. Lawson (1962) Debye-Scherrer x-ray techniques for very high pressure studies in Wentorf RH (ed) Modern very high pressure techniques. Butterworths, Washington, DC, pp 70–91.

    Google Scholar 

  19. E. R. Lippincott, C. E. Weir, A. Van Valkenburg, (1960) Infrared studies of dense forms of ice. J Chem Phys 32(2), 612–614.

    Article  CAS  Google Scholar 

  20. E. R. Lippincott, C. E. Weir, A. Van Valkenburg, E. N. Bunting, (1960) Studies of infrared absorption spectra of solids at high pressures. Spectrochim Acta 16:58–73.

    Article  CAS  Google Scholar 

  21. G. J. Piermarini, C. E. Weir, (1962) High-pressure transition in RbF. J Chem Phys 37(8), 1887–1888.

    Article  CAS  Google Scholar 

  22. C. E. Weir, A. Van Valkenburg, E. R. Lippincott (1962) Optical studies at high pressures using diamond anvils in R. H. Wentorf (ed) Modern very high pressure techniques. Butterworths, Washington, DC, pp 51–69.

    Google Scholar 

  23. Alvin Van Valkenburg Biographical File. Archives Collection, Information Services Division. National Institute of Standards and Technology. Gaithersburg, MD.

    Google Scholar 

  24. R.J. Schneller Jr (2005) Breaking the color barrier: The U.S. naval academy's first black midshipman and the struggle for racial equality, New York University Press, New York, pp 65–67.

    Google Scholar 

  25. Charles Edward Weir Biographical File. Archives Collection, Information Services Division. National Institute of Standards and Technology. Gaithersburg, MD.

    Google Scholar 

  26. Elmer Newman Bunting Biographical File. Archives Collection, Information Services Division. National Institute of Standards and Technology. Gaithersburg, MD.

    Google Scholar 

  27. Obituary of Ellis Ridgeway Lippincott. The Washington Post, December 28, 1974.

    Google Scholar 

  28. A. Van Valkenburg A (1963) High-pressure microscopy, in Giardini AA, Lloyd EC (eds) High pressure measurement. Butterworths, Washington, DC, pp 87–94.

    Google Scholar 

  29. A. Van Valkenburg, (1970) High pressure optics. Appl Opt 9(1), 1–4.

    Article  Google Scholar 

  30. S. Block, C. E. Weir, G. J. Piermarini, (1965) High-pressure single-crystal studies of ice VI. Science 148:947–948.

    Article  CAS  Google Scholar 

  31. G. J. Piermarini, C. E. Weir, (1964) Allotropy in some rare earth metals at high pressures. Science 144, (3614) 69–71.

    Article  CAS  Google Scholar 

  32. C. E. Weir, G. J. Piermarini, (1964) Lattice parameters and lattice energies of high- pressure polymorphs of some alkali halides. J Res Nat Bur Stand, Sect A 68(1), 105–111.

    Google Scholar 

  33. C. Weir, G. Piermarini, S. Block, (1965) Single-crystal x-ray diffraction at high pressures. J Res Nat Bur Stand, Sect C 69(4), 275–281.

    CAS  Google Scholar 

  34. S. Block, C. E. Weir, G. J. Piermarini, (1965) High-pressure single crystal studies of ice VI. Science 148(3672), 947–948.

    Article  CAS  Google Scholar 

  35. A. Santoro, C. E. Weir, S. Block, G. J. Piermarini, (1968) Absorption corrections in complex cases. Application to single crystal diffraction studies at high pressure. J Appl Crystallogr 1:101–107.

    Google Scholar 

  36. G. J. Piermarini, A. D. Mighell, C. E. Weir, S. Block, (1969) Crystal structure of benzene II at 25 kbar. Science 165:1250–1255.

    Article  CAS  Google Scholar 

  37. G. J. Piermarini, A. B. Braun, (1973) Crystal and molecular structure of CCl4-III: A high pressure polymorph at 10 kbar. J Chem Phys 58(5), 1974–1982.

    Article  CAS  Google Scholar 

  38. C. E. Weir, G. J. Piermarini, S. Block, (1969) Instrumentation for single crystal x-ray diffraction at high pressures. Rev Sci Instrum 40(9), 1133–1136.

    Article  Google Scholar 

  39. C. E. Weir, G. J. Piermarini, S. Block, (1969) Crystallography of some high-pressure forms of C6H6, CS2, Br2, CCl4, and KNO3. J Chem Phys 50(5), 2089–2093.

    Article  CAS  Google Scholar 

  40. C. E. Weir, S. Block, G. J. Piermarini, (1970) Compressibility of inorganic azides. J Chem Phys 53(11), 4265–4269.

    Article  CAS  Google Scholar 

  41. R. A. Forman, G. J. Piermarini, J. D. Barnett, S. Block, (1972) Pressure measurement made by the utilization of ruby sharp-line luminescence. Science 176:284–285.

    Article  Google Scholar 

  42. J. D. Barnett, S. Block, G. J. Piermarini, (1973) Optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell. Rev Sci Instrum 44(1), 1–9.

    Article  Google Scholar 

  43. G. J. Piermarini, S. Block, J. D. Barnett, R. A. Forman, (1975) Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J Appl Phys 46:2774–2780.

    Article  CAS  Google Scholar 

  44. G. J. Piermarini, S. Block, J. D. Barnett, (1973) Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys 44:5377–5382.

    Article  CAS  Google Scholar 

  45. G. J. Piermarini, R. A. Forman, S. Block, (1978) Viscosity measurements in the diamond anvil pressure cell. Rev Sci Instrum 49:1061–1066.

    Article  CAS  Google Scholar 

  46. M. I. Eremets (1996) Chapter 3, The diamond anvil cell. in High pressure experimental methods, Oxford University Press, New York, pp 49–92.

    Google Scholar 

  47. G. J. Piermarini, S. Block, (1975) Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale. Rev Sci Instrum 46:973–979.

    Article  CAS  Google Scholar 

  48. W. Thomson (1891) Lecture to the Institution of Civil Engineers, May 3, 1883, Popular Lectures and Addresses by Sir William Thomson (London/New York, Macmillan) vol. 1, p 80.

    Google Scholar 

  49. H. K. Mao, P. M. Bell, (1978) High pressure physics: Sustained static generation of 1.36 to 1.72 Megabars. Science 200:1145–1147.

    Article  CAS  Google Scholar 

  50. W. A. Bassett, T. Takahashi, P. W. Stook, (1967) X-ray diffraction and optical observations on crystalline solids up to 300 kbar. Rev Sci Instrum 38:37–42.

    Article  CAS  Google Scholar 

  51. G. Huber, K. Syassen, W. B. Holzapfel, (1977) Pressure dependence of 4f levels in euopium pentaphosphate up to 400 kbars. Phys Rev B 15:5123–5128.

    Article  CAS  Google Scholar 

  52. L. Merrill, W. A. Bassett, (1974) Miniature diamond anvil pressure cell for single crystal x-ray diffraction studies. Rev Sci Instrum 45:290–294.

    Article  Google Scholar 

  53. S. Block, G. Piermarini, (1976) The diamond cell stimulates high-pressure research. Phys Today 29(9), 44–55.

    Article  CAS  Google Scholar 

  54. I. Fujishiro, G. J. Piermarini, S. Block, R. G. Munro (1982) Viscosities and glass transition pressures in the methanol-ethanol-water system, in C. M. Backman, T. Johannisson, L. Tegner (eds) High pressure in research and industry. 8th AIRAPT Conference Proceedings, Arkitek-tkopia. Uppsala, Sweden, Vol. II, pp 608–611.

    Google Scholar 

  55. Y. B. Zel'dovich, Y.P. Raiser (1966) Physics of Shockwaves and High Temperature Hydrodynamic Phenomena, Academic Press, New York.

    Google Scholar 

  56. R. D. Bardo, T. N. Hall, M. J. Kamlet, (1982) Energies and volumes of activation for condensed detonating explosives. J Chem Phys 77(11), 5858–5859.

    Article  CAS  Google Scholar 

  57. R. D. Bardo, T. N. Hall, M. J. Kamlet, (1979) Volumes of activation in the shock initiation of explosives. Combust Flame 35(3), 259–265.

    Article  CAS  Google Scholar 

  58. P. J. Miller, G. J. Piermarini, S. Block, (1984) An FT-IR microscopic method for kinetic measurements at high temperatures and high pressures. Appl Spectrosc 38:680–686.

    Article  CAS  Google Scholar 

  59. P. J. Miller, S. Block, G. J. Piermarini, (1991) Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behavior of RDX. Combust Flame 83:174–184.

    Article  CAS  Google Scholar 

  60. G. J. Piermarini, S. Block, P. J. Miller, (1989) Effects of pressure on the thermal decomposition kinetics and chemical reactivity of nitromethane. J Phys Chem 93:457–462.

    Article  CAS  Google Scholar 

  61. P. J. Miller, S. Block, G. J. Piermarini, (1989) Effects of pressure on the vibrational spectra of liquid nitromethane. J Phys Chem 93:462–466.

    Article  CAS  Google Scholar 

  62. G. J. Piermarini, S. Block, P. J. Miller, (1987) Effects of pressure and temperature on the thermal decomposition rate and reaction mechanism of β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Phys Chem 91(14), 3872–3878.

    Article  CAS  Google Scholar 

  63. T. P. Russell, P. J. Miller, G. J. Piermarini, S. Block (1993) Pressure/temperature/reaction phase diagrams for several nitramine compounds, in L. H. Liebenberg, R. W. Armstrong, J. J. Gilman (eds) Structure and properties of energetic materials. Materials Research Society Symposium Proceedings, Pittsburgh, PA, pp 199–213.

    Google Scholar 

  64. T. P. Russell, P. J. Miller, G. J. Piermarini, S. Block, (1992) High-pressure phase transition in γ-hexanitrohexaazaisowurtzitane. J Phys Chem 96(13), 5509–5512.

    Article  CAS  Google Scholar 

  65. T. P. Russell, P. J. Miller, G. J. Piermarini, S. Block, (1993) Pressure/temperature phase diagram of Hexanitrohexaazaisowurtzitane. J Phys Chem 97(9), 1993–1997.

    Article  CAS  Google Scholar 

  66. G. J. Piermarini, S. Block, R. Damavarapu, S. Iyer, (1991) 1,4-Dinitrocubane and cubane under high pressure. Propellants Explos Pytotech 16:188–193.

    Article  CAS  Google Scholar 

  67. T. P. Russell, G. J. Piermarini, P. J. Miller, (1997) Pressure/temperature and reaction phase diagram for dinitro azetidinium dinitramide. J Phys Chem B 101:3566–3570.

    Article  CAS  Google Scholar 

  68. T. P. Russell, G. J. Piermarini, S. Block, P. J. Miller, (1996) Pressure, temperature reaction phase diagram for ammonium dinitramide. J Phys Chem 100:3248–3251.

    Article  CAS  Google Scholar 

  69. R. W. Shaw, T. B. Brill, D. L. Thompson (2005) In Overviews of recent research on energetic materials, Advanced Series in Physical Chemistry, World Publishing, Singapore, Vol. 16.

    Google Scholar 

  70. W. C. McCrone, (1950) RDX (Cyclotrimethylenetrinitramine). Anal Chem 22(7), 954–955.

    Article  CAS  Google Scholar 

  71. R. J. Karpowicz, S. T. Sergio, T. B. Brill, (1983) Beta-polymorph of hexahydro-1,3,5-trinitro-s-triazine. A Fourier transform infrared spectroscopy study of an energetic material. Ind Eng Chem Prod Res Dev 22(2), 363–365.

    CAS  Google Scholar 

  72. G. J. Piermarini, S. Block, P. J. Miller (1990) Effects of pressure on the thermal decomposition rates, chemical reactivity, and phase behavior of HMX, RDX and nitromethane, in Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht, pp 391–412.

    Google Scholar 

  73. S. Courtecuisse, F. Cansell, D. Fabre, J. P. Petitet (1995) A Raman spectroscopic study of nitromethane up to 350°C and 35 GPa. J Phys IV (Paris) 5:C4–359–363.

    Google Scholar 

  74. D. T. Cromer, R. R. Ryan, D. Schiferl, (1985) The structure of nitromethane at pressures of 0.3 to 6.0 GPa. J Phys Chem 89:2315–2318.

    Article  CAS  Google Scholar 

  75. J. W. Brasch, (1980) Irreversible reaction of nitromethane at elevated pressure and temperature. J Phys Chem 84:2084–2085.

    Article  CAS  Google Scholar 

  76. R. Ouillon, J. P. Pinan-Lacarré, P. Ranson, (2002) Low-temperature Raman spectra of ni-tromethane single crystals. Lattice dynamics and Davydov splittings. J Chem Phys 116, (11) 4611–4625.

    CAS  Google Scholar 

  77. J. P. Pinan-Lacarré, R. Ouillon, B. Canny, P. Pruzan, P. Ranson, (2003) Pressure effect at room temperature on the low-energy Raman spectra of nitromethane-h(3) and —d(3) up to 45 GPa. J Raman Spectrosc 34:819–825.

    Article  CAS  Google Scholar 

  78. S. F. Rice, M. F. Foltz, (1991) Very high pressure combustion: Reaction propagation rates of nitromethane within a diamond anvil cell. Combust Flame 87(2), 109–122.

    Article  CAS  Google Scholar 

  79. W. E. Brown, D. Dollimore, A. K. Galwey (1980) Reactions in the Solid State in C. H. Bamford, C. H. F. Tipper (eds) Comprehensive Chemical Kinetics, Vol 22, Elsevier, Amsterdam, Chap. 3, pp 0–340.

    Google Scholar 

  80. E. L. Lee, R. H. Sanborn, H. D. Stromberg (1970) Thermal decomposition of high explosives at static pressures to 50 Kbar. Proc 5th Symp (Int) Detonation, pp 331–337.

    Google Scholar 

  81. J. W. Brasch, (1980) Techniques for compressibility measurements on explosive materials using an opposed diamond-anvsil optical cell. Rev Sci Instrum 51:1358–1362.82. Bridgman PW (1932) Volume-temperature-pressure relations for several non-volatile liquids. Proc Am Acad Arts Sci 67:1–27.

    Google Scholar 

  82. H. Liu, J. Zhao, G. Ji, Z. Gong, D. Wei, (2006) Compressibility of liquid nitromethane in the high-pressure regime. Phys B 382:334–339.

    Article  CAS  Google Scholar 

  83. G. W. Lee, W. J. Evans, C. S. Yoo, (2006) Crystallization of water in a dynamic diamond-anvil cell: Evidence for ice VII-like local order in supercompressed water. Phys Rev B 74, (134112) 1–6.

    Google Scholar 

  84. K. Yamamoto, (1980) Supercooling of the coexisting state of Ice VII and water within Ice VI region observed in diamond-anvil pressure cells. Jpn J Appl Phys 19(10), 1841–1845.

    Article  CAS  Google Scholar 

  85. G. J. Piermarini, R. G. Munro, S. Block(1984) Metastability in the H2O and D2O systems at high pressure. Mat Res Soc Symp Proc, vol 22, Elsevier Science, pp 25–28.

    Google Scholar 

  86. S. F. Trevino, E. Prince, C. R. Hubbard (1980) Refinement of the structure of solid ni-tromethane. J Chem Phys 73(6), 2996–3000.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piermarini, G.J. (2009). Diamond Anvil Cell Techniques. In: Peiris, S.M., Piermarini, G.J. (eds) Static Compression of Energetic Materials. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68151-9_1

Download citation

Publish with us

Policies and ethics