Skip to main content

Spatial Resolution of fMRI Techniques

  • Chapter
fMRI

Abstract

Following its introduction over a decade ago, functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) contrast (Ogawa et al. 1990) has become the tool of choice for visualizing neural activity in the human brain. The conventional BOLD approach has been extensively used for pinpointing functional foci of vision, motor, language and memory in normal and clinical patients. Intraoperative localization of functional foci will greatly improve surgical planning for epilepsy and tumor dissection, and potentially, for deep brain stimulation. Therefore, it is critical to understand the spatial resolution of fMRI relative to the actual neural active site (see review articles, (Kim and Ogawa 2002; Kim and Ugurbil 2003)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Nat Acad Sci 100(22):13081–13086

    Article  CAS  PubMed  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  CAS  PubMed  Google Scholar 

  • Duong TQ, Kim D-S, Ugurbil K, Kim S-G (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98:10904–10909

    Article  CAS  PubMed  Google Scholar 

  • Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7(5):519–579

    Article  CAS  PubMed  Google Scholar 

  • Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192:513–520

    CAS  PubMed  Google Scholar 

  • Jin T, Kim SG (2008) Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. Neuroimage 43 (1):1–9

    Article  PubMed  Google Scholar 

  • Jin T, Wang P, Tasker M, Zhao F, Kim S-G (2006) Source of nonlinearity in echo-time-dependent BOLD fMRI. Mag Reson Med 55:1281–1290

    Article  Google Scholar 

  • Kim S-G (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301

    Article  CAS  PubMed  Google Scholar 

  • Kim S-G, Ogawa S (2002) Insights into new techniques for high resolution functional MRI. Curr Opin Neurobiol 12:607–615

    Article  CAS  PubMed  Google Scholar 

  • Kim S-G, Ugurbil K (2003) High-resolution functional magnetic resonance imaging of the animal brain. Sci Direct Methods 30:28–41

    CAS  Google Scholar 

  • Kim SG, Hendrich K, Hu X, Merkle H, Ugurbil K (1994) Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR Biomed 7(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  • Kim S-G, Tsekos NV, Ashe J (1997) Multi-slice perfusion-based functional MRI using the FAIR technique: comparison of CBF and BOLD effects. NMR Biomed 10:191–196

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Kim S-G (2005) Quantification of cerebral arterial blood volume and cerebral blood flow using MRI with modulation of tissue and vessel (MOTIVE) signals. Mag Reson Med 54:333–342

    Article  Google Scholar 

  • Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 34:878–887

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    CAS  Google Scholar 

  • Lee AT, Glover GH, Meyer CH (1995) Dicrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging. Magn Reson Med 33:745–754

    Article  CAS  PubMed  Google Scholar 

  • Lee S-P, Silva AC, Ugurbil K, Kim S-G (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal change. Magn Reson Med 42:919–928

    Article  CAS  PubMed  Google Scholar 

  • Lee S-P, Silva AC, Kim S-G (2002) Comparison of diffusion-weighted high-resolution CBF and spin-echo BOLD fMRI at 9.4 T. Magn Reson Med 47:736–741

    Article  PubMed  Google Scholar 

  • Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implication for functional brain mapping. Science 272:551–554

    Article  CAS  PubMed  Google Scholar 

  • Menon RS (2002) Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Mag Reson Med 47:1–9

    Article  Google Scholar 

  • Metea M, Newman E (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    Article  CAS  PubMed  Google Scholar 

  • Mulligan S, MacVicar B (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431: 195–199

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee T-M, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Masamoto K, Hendrich K, Kanno I, Kim SG (2008) Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo two-photon microscopy. Magn Reson Med 59:855–865

    Article  PubMed  Google Scholar 

  • Pawlik G, Rackl A, Bing RJ (1981) Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res 208:35–58

    Article  CAS  PubMed  Google Scholar 

  • Thulborn KR, Waterton JC, Mattews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochem Biophys Acta 714:265–270

    CAS  PubMed  Google Scholar 

  • Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31: 601–610

    Article  CAS  PubMed  Google Scholar 

  • Wong E, Buxton R, Frank L (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS anf QUIPSS II). Magn Reson Med 39:702–708

    Article  CAS  PubMed  Google Scholar 

  • Woolsey TA, Rovainen CM, Cox SB, Henegar MH, Liang GE, Liu D, Moskalenko YE, Sui J, Wei L (1996) Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb Cortex 6:647–660

    Article  CAS  PubMed  Google Scholar 

  • Yacoub E, Duong TQ, Van De Moortele P, Lindquist M, Adriany G, Kim S-G, Ugurbil K, Hu X (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Mag Reson Med 49:665–664

    Article  Google Scholar 

  • Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC (1997) Correction for vascular artifacts in cerebral blood flow values by using arterial spin tagging techniques. Magn Reson Med 37:226–235

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Wang P, Kim S-G (2004) Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4 T. Mag Reson Med 51:518–524

    Article  Google Scholar 

  • Zhao F, Wang P, Hendrich K, Kim S-G (2005) Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Neuroimage 27:416–424

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Wang P, Hendrich K, Ugurbil K, Kim S-G (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30:1149–1160

    Article  PubMed  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann K-A, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH (EB003324, EB003375 & NS44589). The authors thank their colleagues in the laboratory for providing the figures, and for the discussion

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gi Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, SG., Jin, T., Fukuda, M. (2010). Spatial Resolution of fMRI Techniques. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68132-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68132-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68131-1

  • Online ISBN: 978-3-540-68132-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics