Skip to main content

Clinical Magnetoencephalography and fMRI

  • Chapter
Book cover fMRI
  • 1595 Accesses

Abstract

Over the past two decades, numerous studies have demonstrated that functional magnetic resonance imaging (fMRI) conveniently maps brain activity, both at rest and during a task. The spatial resolution of fMRI in clinical scanners can exceed 1 mm in plane resolution. The temporal resolution, however, is limited to around 1 s or perhaps a few hundred milliseconds depending on the technique and the paradigm used. Today, in the clinical and research setting, MEG often supplements the spatial information from fMRI with high temporal information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors SP, Simpson GV (2004) Geometrical interpretation of fmri-guided MEG/EEG inverse estimates. Neuroimage 22(1):323–332

    Article  PubMed  Google Scholar 

  • Beisteiner R et al (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoen-cephalography. Eur J Neurosci 7(5):1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Bittar RG et al (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921

    Article  CAS  PubMed  Google Scholar 

  • Breier JI et al (1999a) Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magne-toencephalography. Brain Topogr 12(2):89–97

    Article  CAS  Google Scholar 

  • Breier JI et al (1999b) Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology 53(5):938–945

    CAS  Google Scholar 

  • Breier JI et al (2001) Language dominance in children as determined by magnetic source imaging and the intracarotid amobarbital procedure: a comparison. J Child Neurol 16(2):124–130

    CAS  PubMed  Google Scholar 

  • Castillo EM et al (2001) Mapping of expressive language cortex using magnetic source imaging. Neurocase 7(5):419–422

    Article  CAS  PubMed  Google Scholar 

  • Cohen D (1968) Magnetic field measurements of human alpha rhythm. Science 161:784–786

    Article  CAS  PubMed  Google Scholar 

  • Cohen D (1972) Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science 175(22):664–666

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11(2):202–208

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5(2):162–176

    Article  Google Scholar 

  • Dale AM et al (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  CAS  PubMed  Google Scholar 

  • Erdler M et al (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11(6 Pt 1):697–707

    Article  CAS  PubMed  Google Scholar 

  • Erdler M et al (2001) Dissociation of supplementary motor area and primary motor cortex in human subjects when comparing index and little finger movements with functional magnetic resonance imaging. Neurosci Lett 313(1–2):5–8

    Article  CAS  PubMed  Google Scholar 

  • Firsching R et al (1992) Lesions of the sensorimotor region: somatosensory evoked potentials and ultrasound guided surgery. Acta Neurochir (Wien) 118(3–4):87–90

    Article  CAS  Google Scholar 

  • Firsching R et al (2002) Practicability of magnetoencephalogra-phy-guided neuronavigation. Neurosurg Rev 25(1–2):73–78

    CAS  PubMed  Google Scholar 

  • Floel A et al (2001) Language and spatial attention can lateralize to the same hemisphere in healthy humans. Neurology 57(6):1018–1024

    CAS  PubMed  Google Scholar 

  • Ganslandt O et al (1999) Functional neuronavigation with mag-netoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Gross J et al (2000) Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by mag-netoencephalography. J Physiol 527(Pt 3):623–631

    Article  CAS  PubMed  Google Scholar 

  • Gross J et al (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci U S A 98(2):694–699

    Article  CAS  PubMed  Google Scholar 

  • Hämäläinen M, Hari R (2002) Magnetoencephalography. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, Amsterdam, p. xvii, 877

    Google Scholar 

  • Hämäläinen M et al (1993) Magnetoencephalography — theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Vol. Report TKK-F-A559, Helsinki University of Technology, Helsinki, Finland

    Google Scholar 

  • Hari R (1990) Magnetic evoked fields of the human brain: basic principles and applications. Electroencephalogr Clin Neuro-physiol Suppl 41:3–12

    CAS  Google Scholar 

  • Hari R (1991) On brain's magnetic responses to sensory stimuli. J Clin Neurophysiol 8(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Hari R et al (1990) Separate finger representations at the human second somatosensory cortex. Neuroscience 37(1):245–249

    Article  CAS  PubMed  Google Scholar 

  • Hari R et al (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 354(1387):1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka K et al (1997) Striate cortical generators of the N75, P100 and N145 components localized by pattern reversal visual evoked magnetic fields. Tohoku J Exp Med 182(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Holodny AI et al (1999) Correlation between the degree of contrast enhancement and the volume of peritumoral edema in meningiomas and malignant gliomas. Neuroradiology 41(11):820–825

    Article  CAS  PubMed  Google Scholar 

  • Holodny AI et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422

    CAS  PubMed  Google Scholar 

  • Hoshiyama M et al (1996) Somatosensory evoked magnetic fields following stimulation of the lip in humans. Electroen-cephalogr Clin Neurophysiol 100(2):96–104

    Article  CAS  Google Scholar 

  • Hund M et al (1997) Magnetoencephalographic mapping: basic of a new functional risk profile in the selection of patients with cortical brain lesions. Neurosurgery 40(5):936–942; discussion 942–943

    Article  CAS  PubMed  Google Scholar 

  • Inoue T et al (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sul-cus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage 10(6):738–748

    Article  CAS  PubMed  Google Scholar 

  • Jannin P et al (2000) A data fusion environment for multimodal and multi-informational neuronavigation. Comput Aided Surg 5(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Jannin P et al (2002) Integration of sulcal and functional information for multimodal neuronavigation. J Neurosurg 96(4):713–723

    Article  PubMed  Google Scholar 

  • Kakigi R (1994) Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res 20(2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Kober H et al (2001a) Correlation of sensorimotor activation with functional magnetic resonance imaging and magneto-encephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228

    Article  CAS  Google Scholar 

  • Kober H et al (2001b) New approach to localize speech relevant brain areas and hemispheric dominance using spatially fil-tered magnetoencephalography. Hum Brain Mapp 14(4):236–250

    Article  CAS  Google Scholar 

  • Lewine JD, Orrison WW Jr (1995) Magnetic source imaging: basic principles and applications in neuroradiology. Acad Radiol 2(5):436–440

    Article  CAS  PubMed  Google Scholar 

  • Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Makela JP et al (2001) Three-dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip. Hum Brain Mapp 12(3):180–192

    Article  CAS  PubMed  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters SIAM. J Appl Math 11(2):431–441

    Google Scholar 

  • Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11):1342–1354

    Article  CAS  PubMed  Google Scholar 

  • Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46(3):245–259

    Article  CAS  PubMed  Google Scholar 

  • Nakasato N, Yoshimoto T (2000) Somatosensory, auditory, and visual evoked magnetic fields in patients with brain diseases. J Clin Neurophysiol 17(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Nakasato N et al (1996) Clinical application of visual evoked fields using an MRI-linked whole head MEG system. Front Med Biol Eng 7(4):275–283

    CAS  PubMed  Google Scholar 

  • Panagiotis B (1999) Grand mal seizures with liver toxicity in a case of clozapine treatment. J Neuropsychiatry Clin Neurosci 11(1):117–118

    CAS  PubMed  Google Scholar 

  • Pantev C et al (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencehalogr Clin Neurophysiol 94:26–40

    Article  CAS  Google Scholar 

  • Papanicolaou AC et al (1999) Magnetoencephalographic mapping of the language-specific cortex. J Neurosurg 90(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Rezai AR et al (1996) The interactive use of magnetoencephalog-raphy in stereotactic image-guided neurosurgery. Neurosurgery 39(1):92–102

    Article  CAS  PubMed  Google Scholar 

  • Rezai AR et al (1997) Integration of functional brain mapping in image-guided neurosurgery. Acta Neurochir Suppl 68:85–89

    CAS  PubMed  Google Scholar 

  • Roberts TP et al (2000) Latency of the auditory evoked neuro-magnetic field components: stimulus dependence and insights toward perception. J Clin Neurophysiol 17(2):114–129

    Article  CAS  PubMed  Google Scholar 

  • Roberts TP et al (2000) Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol 17(2):57–64

    Article  CAS  PubMed  Google Scholar 

  • Schiffbauer H et al (2001) Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 49(6):1313–1320; discussion 1320–1321

    Article  CAS  PubMed  Google Scholar 

  • Simos PG et al (1999a) Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation. Neuroreport 10(1):139–142

    Article  CAS  Google Scholar 

  • Simos PG et al (1999b) Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg 91(5):787–796

    Article  CAS  Google Scholar 

  • Simos PG et al (2001) Mapping of receptive language cortex in bilingual volunteers by using magnetic source imaging. J Neurosurg 95(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Szymanski MD, Rowley HA, Roberts TP (1999) A hemispheri-cally asymmetrical MEG response to vowels. Neuroreport 10(12):2481–2486

    Article  CAS  PubMed  Google Scholar 

  • Szymanski MD et al (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94(3):445–453

    Article  CAS  PubMed  Google Scholar 

  • Ugurbil K, Toth L, Kim DS (2003) How accurate is magnetic resonance imaging of brain function? Trends Neurosci 26(2):108–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Stufflebeam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stufflebeam, S.M. (2010). Clinical Magnetoencephalography and fMRI. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68132-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68132-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68131-1

  • Online ISBN: 978-3-540-68132-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics