Skip to main content

Mapping of Recovery from Poststroke Aphasia: Comparison of PET and fMRI

  • Chapter
Book cover fMRI

Abstract

The energy demand of the brain is very high and relies almost entirely on the oxidative metabolism of glucose. Glucose metabolized in neuronal cell bodies mainly supports cellular, vegetative and house-keeping functions, e.g., axonal transport, biosynthesis of nucleic acids, proteins, lipids, as well as other energy-consuming processes not related directly to action potentials. Therefore, the energy demand of neuronal cell bodies is relatively low and essentially unaffected by neuronal functional activation (Sokoloff 1999). A larger portion of energy consumption is required for signalling, mainly action potential propagation and postsynaptic ion fluxes; this might account for up to 87% of the total energy consumed with only 13% expended in maintaining membrane resting potential (Laughlin and Attwell 2001). As a consequence, the rate of glucose consumption of neuronal cell bodies is essentially unaffected by functional activation, whereas increases in metabolism (and in the coupled regional blood flow) evoked by functional activation are confined to synapse-rich regions, i.e., the neutropil that contains axonal terminals, dendritic processes, and the astrocytic processes that envelop the synapses (Magistretti 2004). The magnitudes of these increases are linearly related to the frequency of action potentials in the afferent pathways, and increases of metabolism and blood flow in the projection zones occur regardless of whether the pathway is excitatory or inhibitory. Only at the next downstream projection zones, glucose utilization (and, as a consequence, blood supply) is depressed in inhibited neurons and increased in excited neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basso A, Gardelli M, Grassi MP, Mariotti M (1989) The role of the right hemisphere in recovery from aphasia. Two case studies. Cortex 25:555–566

    CAS  PubMed  Google Scholar 

  • Belin P, van Eeckhout P, Zilbovicius M, Remy P, Francois C, Guillaume S, Chain F, Rancurel G, Samson Y (1996) Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology 47:1504–1511

    CAS  PubMed  Google Scholar 

  • Berthier ML, Starkstein SE, Leiguarda R, Ruiz A, Mayberg HS, Wagner H, Price TR, Robinson RG (1991) Transcortical aphasia. Importance of the nonspeech dominant hemisphere in language repetition. Brain 114(Pt 3):1409–1427

    Article  PubMed  Google Scholar 

  • Berthier ML, Green C, Higueras C, Fernandez I, Hinojosa J, Martin MC (2006) A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology 67:1687–1689

    Article  CAS  PubMed  Google Scholar 

  • Booth JR, Wood L, Lu D, Houk JC, Bitan T (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133:136–144

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Vikingstad EM, George KP, Johnson AF, Welch KMA (1999) Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke 30:2331–2340

    CAS  PubMed  Google Scholar 

  • Cappa SF, Perani D, Grassi F, Bressi S, Alberoni M, Franceschi M, Bettinardi V, Todde S, Fazio F (1997) A PET follow-up study of recovery after stroke in acute aphasics. Brain Lang 56:55–67

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–403

    CAS  PubMed  Google Scholar 

  • Crinion JT, Leff AP (2007) Recovery and treatment of aphasia after stroke: functional imaging studies. Curr Opin Neurol 20:667–673

    Article  PubMed  Google Scholar 

  • Demonet JF, Fiez JA, Paulesu E, Petersen SE, Zatorre RJ (1996) PET studies of phonological processing: a critical reply to Poeppel. Brain Lang 55:352–379

    Article  PubMed  Google Scholar 

  • Feeney DM, Baron JC (1986) Diaschisis. Stroke 17:817–830

    CAS  PubMed  Google Scholar 

  • Fernandez B, Cardebat D, Demonet JF, Joseph PA, Mazaux JM, Barat M, Allard M (2004) Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke 35:2171–2176

    Article  PubMed  Google Scholar 

  • Ferro JM, Mariano G, Madureira S (1999) Recovery from aphasia and neglect. CerebrovascDis 9(Suppl 5):6–22

    Article  Google Scholar 

  • Gainotti G (1993) The riddle of the right hemisphere's contribution to the recovery of language. Eur J Disord Commun 28:227–246

    Article  CAS  PubMed  Google Scholar 

  • Greener J, Enderby P, Whurr R (2001a) Speech and language therapy for aphasia following stroke (Cochrane Review). The Cochrane Library 3 Oxford: Update Software

    Google Scholar 

  • Greener J, Enderby P, Whurr R (2001b) Pharmacological treatment for aphasia following stroke (Protocol for a Cochrane Review). The Cochrane Library 3 Oxford: Update Software

    Google Scholar 

  • Heiss WD, Emunds HG, Herholz K (1993a) Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke 24:1784–1788

    CAS  Google Scholar 

  • Heiss WD, Kessler J, Karbe H, Fink GR, Pawlik G (1993b) Cerebral glucose metabolism as a predictor of recovery from aphasia in ischemic stroke. Arch Neurol 50:958–964

    CAS  Google Scholar 

  • Heiss WD, Kessler J, Thiel A, Ghaemi M, Karbe H (1999) Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 45:430–438

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Thiel A (2006) A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang 98:118–123

    Article  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nature Rev 8:393–402

    Article  CAS  Google Scholar 

  • Hillis AE, Kleinman JT, Newhart M, Heidler-Gary J, Gottesman R, Barker PB, Aldrich E, Llinas R, Wityk R, Chaudhry P (2006) Restoring cerebral blood flow reveals neural regions critical for naming. J Neurosci 26:8069–8073

    Article  CAS  PubMed  Google Scholar 

  • Jordan LC, Hillis AE (2006) Disorders of speech and language: aphasia, apraxia and dysarthria. Curr Opin Neurol 19:580–585

    Article  PubMed  Google Scholar 

  • Karbe H, Herholz K, Szelies B, Pawlik G, Wienhard K, Heiss WD (1989) Regional metabolic correlates of Token test results in cortical and subcortical left hemispheric infarction. Neurology 39:1083–1088

    CAS  PubMed  Google Scholar 

  • Karbe H, Kessler J, Herholz K, Fink GR, Heiss WD (1995) Long-term prognosis of poststroke aphasia studied with positron emission tomography. Arch Neurol 52:186–190

    CAS  PubMed  Google Scholar 

  • Karbe H, Thiel A, Weber-Luxenburger G, Herholz K, Kessler J, Heiss WD (1998) Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere? Brain Lang 64:215–230

    Article  CAS  PubMed  Google Scholar 

  • Kessler J, Thiel A, Karbe H, Heiss WD (2000) Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 31:2112–2116

    CAS  PubMed  Google Scholar 

  • Knecht S, Floel A, Drager B, Breitenstein C, Sommer J, Henningsen H, Ringelstein EB, Pascual-Leone A (2002) Degree of language lateralization determines susceptibility to unilateral brain lesions. Nat Neurosci 5:695–699

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  • Kumar R, Masih AK, Pardo J (1996) Global aphasia due to thal-amic hemorrhage: a case report and review of the literature. Arch Phys Med Rehabil 77:1312–1315

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, Attwell D (2001) The metabolic cost of neural information: from fly eye to mammalian cortex. HFSP Workshop 11—Neuroenergetics:54–64

    Google Scholar 

  • Lezak M, Howieson D, Loring D (2004) Neuropsychological assessment. Oxford University Press, Oxford

    Google Scholar 

  • Magistretti PJ (2004) Brain energy metabolism. In: From molecules to networks. Elsevier, Amsterdam

    Google Scholar 

  • Martin PI, Naeser MA, Theoret H, Tormos JM, Nicholas M, Kurland J, Fregni F, Seekins H, Doron K, Pascual-Leone A (2004) Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang 25:181–191

    Article  PubMed  Google Scholar 

  • Metter EJ, Kempler D, Jackson CA, Hanson WR, Riege WH, Camras LR, Mazziotta JC, Phelps ME (1987) Cerebellar glucose metabolism in chronic aphasia. Neurology 37:1599–1606

    CAS  PubMed  Google Scholar 

  • Metter EJ, Riege WH, Hanson WR, Jackson CA, Kempler D, Van Lancker D (1988) Subcortical structures in aphasia. An analysis based on (18 F)-fluorodeoxyglucose, positron emission tomography, and computed tomography. Arch Neurol 45:1229–1234

    CAS  PubMed  Google Scholar 

  • Metter EJ, Hanson WR, Jackson CA, Kempler D, Van Lancker D, Mazziotta JC, Phelps ME (1990) Temporoparietal cortex in aphasia. Evidence from positron emission tomography. Arch Neurol 47:1235–1238

    CAS  PubMed  Google Scholar 

  • Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98:6859–6864

    Article  CAS  PubMed  Google Scholar 

  • Muller RA, Rothermel RD, Behen ME, Muzik O, Mangner TJ, Chakraborty PK, Chugani HT (1998) Brain organization of language after early unilateral lesion: a PET study. Brain Lang 62:422–451

    Article  CAS  PubMed  Google Scholar 

  • Musso M, Weiller C, Kiebel S, Müller SP, Bülau P, Rijntjes M (1999) Training-induced brain plasticity in aphasia. Brain 122(Pt 9):1781–1790

    Article  PubMed  Google Scholar 

  • Naeser MA, Martin PI, Baker EH, Hodge SM, Sczerzenie SE, Nicholas M, Palumbo CL, Goodglass H, Wingfield A, Samaraweera R, Harris G, Baird A, Renshaw P, Yurgelun-Todd D (2004) Overt propositional speech in chronic nonflu-ent aphasia studied with the dynamic susceptibility contrast fMRI method. Neuroimage 22:29–41

    Article  PubMed  Google Scholar 

  • Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, Theoret H, Fregni F, Maria-Tormos J, Kurland J, Doron KW, Pascual-Leone A (2005) Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang 93:95–105

    Article  PubMed  Google Scholar 

  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–1794

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxy-genation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  Google Scholar 

  • Ohyama M, Senda M, Kitamura S, Ishii K, Mishina M, Terashi A (1996) Role of the nondominant hemisphere and undamaged area during word repetition in poststroke apha-sics—a PET activation study. Stroke 27:897–903

    CAS  PubMed  Google Scholar 

  • Orgogozo JM (1998) Piracetam in the treatment of acute stroke. CNS Drugs 9:41–49

    Article  CAS  Google Scholar 

  • Pascual-Leone A, Davey N, Wassermann EM, Rothwell J, Puri B. (2002). Handbook of transcranial magnetic stimulation. Arnold Press, London

    Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589

    Article  CAS  PubMed  Google Scholar 

  • Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197(Pt 3):335–359

    Article  PubMed  Google Scholar 

  • Price CJ, Crinion J (2005) The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 18:429–434

    Article  PubMed  Google Scholar 

  • Raboyeau G, De Boissezon X, Marie N, Balduyck S, Puel M, Bezy C, Demonet JF, Cardebat D (2008) Right hemisphere activation in recovery from aphasia: lesion effect or function recruitment? Neurology 70:290–298

    Article  CAS  PubMed  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The (18 F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    CAS  PubMed  Google Scholar 

  • Rosen HJ, Petersen SE, Linenweber MR, Snyder AZ, White DA, Chapman L, Dromerick AW, Fiez JA, Corbetta MD (2000) Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 55:1883–1894

    CAS  PubMed  Google Scholar 

  • Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, Weiller C (2006) Dynamics of language reorganization after stroke. Brain 129:1371–1384

    Article  PubMed  Google Scholar 

  • Siebner HR, Takano B, Peinemann A, Schwaiger M, Conrad B, Drzezga A (2001) Continuous transcranial magnetic stimulation during positron emission tomography: a suitable tool for imaging regional excitability of the human cortex. Neuroimage 14:883–890

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24:321–329

    Article  CAS  PubMed  Google Scholar 

  • Thiel A, Herholz K, von Stockhausen HM, Leyen-Pilgram K, Pietrzyk U, Kessler J, Wienhard K, Klug N, Heiss WD (1998) Localization of language-related cortex with 15O-labeled water PET in patients with gliomas. Neuroimage 7:284–295

    Article  CAS  PubMed  Google Scholar 

  • Thiel A, Herholz K, Koyuncu A, Ghaemi M, Kracht L, Habedank B, Heiss WD (2001) Plasticity of language networks in patients with brain tumors: a PET activation study. Ann Neurol 50:620–629

    Article  CAS  PubMed  Google Scholar 

  • Thiel A, Habedank B, Winhuisen L, Herholz K, Kessler J, Haupt WF, Heiss WD (2005) Essential language function of the right hemisphere in brain tumor patients. Ann Neurol 57:128–131

    Article  PubMed  Google Scholar 

  • Thiel A, Habedank B, Herholz K, Kessler J, Winhuisen L, Haupt WF, Heiss WD (2006a) From the left to the right: how the brain compensates progressive loss of language function. Brain Lang 98:57–65

    Article  Google Scholar 

  • Thiel A, Schumacher B, Wienhard K, Gairing S, Kracht LW, Wagner R, Haupt WF, Heiss WD (2006b) Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab 26:1122–1127

    Google Scholar 

  • Thompson CK (2000) The neurobiology of language recovery in aphasia. Brain Lang 71:245–248

    Article  CAS  PubMed  Google Scholar 

  • Turner R, Howseman A, Rees G, Josephs O (1997) Functional imaging with magnetic resonance. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (eds) Human brain function. Academic, San Diego, pp 467–486

    Google Scholar 

  • Wade DT, Hewer RL, David RM, Enderby PM (1986) Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry 49:11–16

    Article  CAS  PubMed  Google Scholar 

  • Walker-Batson D, Curtis S, Natarajan R, Ford J, Dronkers N, Salmeron E, Lai J, Unwin DH (2001) A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 32:2093–2098

    Article  CAS  PubMed  Google Scholar 

  • Warburton E, Wise RJS, Price CJ, Weiller C, Hadar U, Ramsay S, Frackowiak RSJ (1996) Noun and verb retrieval by normal subjects studies with PET. Brain 119:159–179

    Article  PubMed  Google Scholar 

  • Warburton E, Price CJ, Swinburn K, Wise RJS (1999) Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry 66:155–161

    Article  CAS  PubMed  Google Scholar 

  • Wassermann EM, Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BK (2002) Safety and side-effects of transcranial magnetic stimulation and repetitive transcranial magnetic stimulation. In: Handbook of transcranial magnetic stimulation. Arnold Press, London, pp 39–49

    Google Scholar 

  • Weiller C, Isensee C, Rijntjes M, Huber W, Müller S, Bier D, Dutschka K, Woods RP, Noth J, Diener HC (1995) Recovery from Wernicke's aphasia: a positron emission tomographic study. Ann Neurol 37:723–732

    Article  CAS  PubMed  Google Scholar 

  • Winhuisen L, Thiel A, Schumacher B, Kessler J, Rudolf J, Haupt WF, Heiss WD (2005) Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 36:1759–1763

    Article  PubMed  Google Scholar 

  • Wise RJ (2003) Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 65:95–119

    Article  PubMed  Google Scholar 

  • Zahn R, Schwarz M, Huber W (2006) Functional activation studies of word processing in the recovery from aphasia. J Physiol Paris 99:370–385

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, WD. (2010). Mapping of Recovery from Poststroke Aphasia: Comparison of PET and fMRI. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68132-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68132-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68131-1

  • Online ISBN: 978-3-540-68132-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics