Skip to main content

Complicated Urinary Tract Infections due to Catheters

  • Chapter
The Role of Biofilms in Device-Related Infections

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 3))

Abstract

Urinary catheters are indwelling medical devices used in both the nosocomial and nursing home settings for relief of urinary retention and incontinence. Due to the frequent- and sometimes unnecessary-use of indwelling catheters in these settings (circa 21–50% of patients), many individuals are placed at risk from sequelae associated with catheter placement. The most notable complication associated with indwelling urinary catheters is the development of nosocomial urinary tract infections (UTIs) known as catheter-associated UTIs (CAUTIs). Over one million CAUTI cases per annum are recorded in the United States; this represents greater than 40% of all nosocomial infections. Both the presence of the catheter itself and the nosocomial setting predispose individuals to CAUTIs. CAUTIS may be caused by a number of etiological agents; the most common of these being Escherichia coli and Proteus mirabilis. Microorganisms isolated less commonly from CAUTIs include Staphylococcus aureus, Klebsiella spp., Pseudomonas spp. and Enterobacter spp. Regardless of the genus, pathogens wishing to survive within the environment of the catheterized urinary tract must possess essential virulence factors including, most importantly, those related to adherence to the catheter itself. This chapter seeks to set out in detail the nature of these virulence factors.

These two authors contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acolet D, Ahmet Z, Houang E, Hurley R, Kaufmann ME (1994) Enterobacter cloacae in a neonatal intensive care unit: account of an outbreak and its relationship to use of third generation cephalosporins J Hasp Infect 28:273–286

    CAS  Google Scholar 

  • Acres SD, Laing CJ, Saunders JR, Radostits OM (1975) Acute undifferentiated neonatal diarrhea in beef calves. I. Occurence and distribution of infectious agents. Can J Comp Med 39:116–132

    PubMed  CAS  Google Scholar 

  • Allan VJ, Callow ME, Macaskie LE, Paterson-Beedle M (2002) Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp. Microbiology 148:277–288

    PubMed  CAS  Google Scholar 

  • Allison C, Lai HC, Hughes C (1992) Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6:1583–1591

    PubMed  CAS  Google Scholar 

  • Allison C, Lai HC, Gygi D, Hughes C (1993) Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol Microbiol 8:53–60

    PubMed  CAS  Google Scholar 

  • Allison C, Emody L, Coleman N, Hughes C (1994) The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169:1155–1158

    PubMed  CAS  Google Scholar 

  • Altman E, Harrison BA, Latta RK, Lee KK, Kelly JF, Thibault P (2001) Galectin-3-mediated adherence of Proteus mirabilis to Madin-Darby canine kidney cells. Biochem Cell Biol 79:783–788

    PubMed  CAS  Google Scholar 

  • Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107

    PubMed  CAS  Google Scholar 

  • Anderson GG, Dodson KW, Hooton TM, Hultgren SJ (2004) Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol 12:424–430

    PubMed  CAS  Google Scholar 

  • Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore MS, Charbonne F, Joly B (2002) In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res Microbiol 153:75–80

    PubMed  CAS  Google Scholar 

  • Aucken HM, Pitt TL (1998) Antibiotic resistance and putative virulence factors of Serratia marcescens with respect to O and K serotypes. J Med Microbiol 47:1105–1113

    PubMed  CAS  Google Scholar 

  • Bahrani FK, Mobley HL (1993) Proteus mirabilis MR/P fimbriae: molecular cloning, expression, and nucleotide sequence of the major fimbrial subunit gene. J Bacteriol 175:457–464

    PubMed  CAS  Google Scholar 

  • Bahrani FK, Mobley HL (1994) Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression. J Bacteriol 176:3412–3419

    PubMed  CAS  Google Scholar 

  • Bahrani FK, Johnson DE, Robbins D, Mobley HL (1991) Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect Immun 59:3574–3580

    PubMed  CAS  Google Scholar 

  • Bahrani FK, Cook S, Hull RA, Massad G, Mobley HL (1993) Proteus mirabilis fimbriae: N-terminal amino acid sequence of a major fimbrial subunit and nucleotide sequences of the genes from two strains. Infect Immun 61:884–891

    PubMed  CAS  Google Scholar 

  • Bahrani FK, Massad G, Lockatell CV, Johnson DE, Russell RG, Warren JW, Mobley HL (1994) Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 62:3363–3371

    PubMed  CAS  Google Scholar 

  • Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Iosi F, Arciola CR, Montanaro L, Di RR, Gherardi G, Dicuonzo G, Orefici G, Creti R (2001) Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol (Berl) 190:113–120

    CAS  Google Scholar 

  • Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66-(1):336–342

    PubMed  CAS  Google Scholar 

  • Beizer JL (1996) Urinary incontinence in women: a review for the pharmacist. J Am Pharm Assoc (Wash) NS36:196–202

    CAS  Google Scholar 

  • Belas R (1992) The swarming phenomenon of Proteus mirabilis. ASM News 58:15–22

    Google Scholar 

  • Belas R (1994) Expression of multiple flagellin-encoding genes of Proteus mirabilis. J Bacteriol 176:7169–7181

    PubMed  CAS  Google Scholar 

  • Belas R, Flaherty D (1994) Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. Gene 148:33–41

    PubMed  CAS  Google Scholar 

  • Belas R, Suvanasuthi R (2005) The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J Bacteriol 187:6789–6803

    PubMed  CAS  Google Scholar 

  • Belas R, Erskine D, Flaherty D (1991) Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol 173:6279–6288

    PubMed  CAS  Google Scholar 

  • Belas R, Manos J, Suvanasuthi R (2004) Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun 72:5159–5167

    PubMed  CAS  Google Scholar 

  • Benton J, Chawla J, Parry S, Stickler D (1992) Virulence factors in Escherichia coli from urinary tract infections in patients with spinal injuries. J Hasp Infect 22:117–127

    CAS  Google Scholar 

  • Bergogne-Berezin E (1995) Nosocomial infections: new agents, incidence, prevention. Presse Med 24:89–97

    PubMed  CAS  Google Scholar 

  • Beynon LM, Dumanski AJ, McLean RJ, MacLean LL, Richards JC, Perry MB (1992) Capsule structure of Proteus mirabilis (ATCC 49565). J Bacteriol 174:2172–2177

    PubMed  CAS  Google Scholar 

  • Bian Z, Yan ZQ, Hansson GK, Thoren P, Normark S (2001) Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice. J Infect Dis 183:612–619

    PubMed  CAS  Google Scholar 

  • Bibby JM, Cox AJ, Hukins DWL (1995) Feasibility of preventing encrustation on urinary catheters. Cells Mater 2:183–195

    Google Scholar 

  • Bijlsma IG, van DL, Kusters JG, Gaastra W (1995) Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology 141:1349–1357

    PubMed  CAS  Google Scholar 

  • Bondarenko VM, Popov VL, Timofeeva IT (1981) [Citrobacter freundii interaction with epithelial cells and macrophages in vitro]. Zh Mikrobiol Epidemiol Immunobiol 64–67

    Google Scholar 

  • Breitenbach JM Hausinger RP (1988) Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids. Biochem J 250:917–920

    PubMed  CAS  Google Scholar 

  • Brinton CC (1965) The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans NY Acad Sci 27:1003–1054

    CAS  Google Scholar 

  • Burton E, Gawande PV, Yakandawala N, LoVetri K, Zhanel GG, Romeo T, Friesen AD, Madhyastha S (2006) Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother 50:1835–1840

    PubMed  CAS  Google Scholar 

  • Buttiaux R, Osteux R, Fresnoy R, Moriamez J (1954) The characteristic biochemical properties of the genus Proteus; desirable inclusion of the Providencia in this group. Ann Inst Pasteur (Paris) 87:375–386

    CAS  Google Scholar 

  • Chippendale GR, Warren JW, Trifillis AL, Mobley HL (1994) Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun 62:3115–3121

    PubMed  CAS  Google Scholar 

  • Chow AW, Taylor PR, Yoshikawa TT, Guze LB (1979) A nosocomial outbreak of infections due to multiply resistant Proteus mirabilis: role of intestinal colonization as a major reservoir. J Infect Dis 139:621–627

    PubMed  CAS  Google Scholar 

  • Clapham LR, McLean JC, Nickel JC, Downey J, Costerton JW (1990) The influence of bacteria on struvite crystal habit and its importance in urinary stone formation. J Cryst Growth 104:475–484

    CAS  Google Scholar 

  • Clegg S, Gerlach GF (1987) Enterobacterial fimbriae. J Bacteriol 169:934–938

    PubMed  CAS  Google Scholar 

  • Coker C, Poore CA, Li X, Mobley HL (2000) Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2:1497–1505

    PubMed  CAS  Google Scholar 

  • Comolli JC, Waite LL, Mostov KE, Engel JN (1999) Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect Immun 67:3207–3214

    PubMed  CAS  Google Scholar 

  • Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci USA 93:9827–9832

    PubMed  CAS  Google Scholar 

  • Cook SW, Mody N, Valle J, Hull R (1995) Molecular cloning of Proteus mirabilis uroepithelial cell adherence (uca) genes. Infect Immun 63:2082–2086

    PubMed  CAS  Google Scholar 

  • Costerton JW (1980) Pseudomonas aeruginosa in nature and disease In: Sabath CD (ed) Pseudomonas aeruginosa: the organism, diseases it causes and their treatment. Hans Huber, Bern, pp 15–24

    Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    PubMed  CAS  Google Scholar 

  • Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    PubMed  CAS  Google Scholar 

  • Cucarella C, Tormo MA, Ubeda C, Trotonda MP, Monzon M, Peris C, Amorena B, Lasa I, Penades JR (2004) Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 72:2177–2185

    PubMed  CAS  Google Scholar 

  • Daifuku R, Stamm WE (1986) Bacterial adherence to bladder uroepithelial cells in catheter-associated urinary tract infection. N Engl J Med 314:1208–1213

    PubMed  CAS  Google Scholar 

  • Damron DJ, Warren JW, Chippendale GR, Tenney JH (1986) Do clinical microbiology laboratories report complete bacteriology in urine from patients with long-term urinary catheters? J Clin Microbiol 24:400–404

    PubMed  CAS  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    PubMed  CAS  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2001) Biofilm formation as a developmental process. Methods Enzymol 336:19–26

    PubMed  CAS  Google Scholar 

  • Darfeuille-Michaud A, Jallat C, Aubel D, Sirot D, Rich C, Sirot J, Joly B (1992) R-plasmidencoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infect Immun 60:44–55

    PubMed  CAS  Google Scholar 

  • Darouiche RO, Donovan WH, Del TM, Thornby JI, Rudy DC, Hull RA (2001) Pilot trial of bacterial interference for preventing urinary tract infection. Urology 58:339–344

    PubMed  CAS  Google Scholar 

  • Darouiche RO, Smith JA, Jr., Hanna H, Dhabuwala CB, Steiner MS, Babaian RJ, Boone TB, Scardino PT, Thornby JI, Raad II (1999) Efficacy of antimicrobial-impregnated bladder catheters in reducing catheter-associated bacteriuria: a prospective, randomized, multicenter clinical trial. Urology 54:976–981

    PubMed  CAS  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    PubMed  CAS  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    PubMed  CAS  Google Scholar 

  • Depaola A, Peller JT, Rodrick GE (1995) Effect of oxytetracycline-medicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. Appl Environ Microbiol 61:3513

    PubMed  CAS  Google Scholar 

  • Deziel E, Comeau Y, Villemur R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204

    PubMed  CAS  Google Scholar 

  • Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A (2003) Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces Res Microbiol 154:9–16

    PubMed  Google Scholar 

  • Di Rosa R, Creti R, Venditti M, D’Amelio R, Arciola CR, Montanaro L, Baldassarri L (2006) Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium. FEMS Microbiol Lett 256:145–150

    PubMed  Google Scholar 

  • Dibb-Fuller MP, Allen-Vercoe E, Thorns CJ, Woodward MJ (1999) Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145:1023–1031

    PubMed  CAS  Google Scholar 

  • Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743

    PubMed  CAS  Google Scholar 

  • Donlan RM (2001a) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    PubMed  CAS  Google Scholar 

  • Donlan RM (2001b) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    PubMed  CAS  Google Scholar 

  • Drelichman V, Band JD (1985) Bacteremias due to Citrobacter diversus and Citrobacter freundii. Incidence, risk factors, and clinical outcome. Arch Intern Med 145:1808–1810

    PubMed  CAS  Google Scholar 

  • Dumanski AJ, Hedelin H, Edin-Liljegren A, Beauchemin D, McLean RJ (1994) Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi. Infect Immun 62:2998–3003

    PubMed  CAS  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    PubMed  CAS  Google Scholar 

  • Dworniczek E, Kuzko K, Mroz E, Wojciech L, Adamski R, Sobieszczanska B, Seniuk A (2003) Virulence factors and in vitro adherence of Enterococcus strains to urinary catheters. Folia Microbiol (Praha) 48:671–678

    CAS  Google Scholar 

  • Eberl L, Molin S, Givskov M (1999) Surface motility of Serratia liquefaciens MG1. J Bacteriol 181:1703–1712

    PubMed  CAS  Google Scholar 

  • Emori TG, Gaynes RP (1993) An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 6:428–442

    PubMed  CAS  Google Scholar 

  • Eng RH, Padberg FT, Smith SM, Tan EN, Cherubin CE (1991) Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 35:1824–1828

    PubMed  CAS  Google Scholar 

  • Ewing W (1986) Edward’s and Ewing’s identification of enterobactericeae. Elsevier, New York

    Google Scholar 

  • Falkiner FR (1992) Enterobacter in hospital. J Hosp Infect 20:137–140

    PubMed  CAS  Google Scholar 

  • Farmer JJI (1999) Enterobacteriaceae introduction and identification. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (ed) Manual of clinical microbiology. American Society for Microbiology, Washington, pp 442–458

    Google Scholar 

  • Favre-Bonte S, Darfeuille-Michaud A, Forestier C (1995) Aggregative adherence of Klebsiella pneumoniae to human intestine-407 cells. Infect Immun 63:1318–1328

    PubMed  CAS  Google Scholar 

  • Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A (1998) Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66:43–51

    PubMed  CAS  Google Scholar 

  • Fernandez LA, Berenguer J (2000) Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24:21–44

    PubMed  CAS  Google Scholar 

  • Fernères L, Hancock V, Klemm P (2007) Specific selection for virulent urinary tract infectious Escherichia coli strains during catheter-associated biofilm formation. FEMS Immunol Med Microbiol 51(1):212–219

    Google Scholar 

  • Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    PubMed  CAS  Google Scholar 

  • Fraser GM, Claret L, Furness R, Gupta S, Hughes C (2002) Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology 148:2191–2201

    PubMed  CAS  Google Scholar 

  • Gallagher PG (1990) Enterobacter bacteremia in pediatric patients. Rev Infect Dis 12:808–812

    PubMed  CAS  Google Scholar 

  • Gaonkar TA, Sampath LA, Modak SM (2003) Evaluation of the antimicrobial efficacy of urinary catheters impregnated with antiseptics in an in vitro urinary tract model. Infect Control Hosp Epidemiol 24:506–513

    PubMed  Google Scholar 

  • Garibaldi RA, Burke JP, Britt MR, Miller MA, Smith CB (1980) Meatal colonization and catheter-associated bacteriuria. N Engl J Med 303:316–318

    PubMed  CAS  Google Scholar 

  • Gaston MA (1988) Enterobacter: an emerging nosocomial pathogen. J Hosp Infect 11:197–208

    PubMed  CAS  Google Scholar 

  • Gerlach GF, Allen BL, Clegg S (1989) Type 3 fimbriae among enterobacteria and the ability of spermidine to inhibit MR/K hemagglutination. Infect Immun 57:219–224

    PubMed  CAS  Google Scholar 

  • Givskov M, Eberl L, Christiansen G, Benedik MJ, Molin S (1995) Induction of phospholipaseand flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Mol Microbiol 15:445–454

    PubMed  CAS  Google Scholar 

  • Gladstone IM, Ehrenkranz RA, Edberg SC, Baltimore RS (1990) A ten-year review of neonatal sepsis and comparison with the previous fifty-year experience. Pediatr Infect Dis J 9:819–825

    PubMed  CAS  Google Scholar 

  • Gophna U, Barlev M, Scijffers R, Oelschlager TA, Hacker J, Ron EZ (2001) Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665

    PubMed  CAS  Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    PubMed  CAS  Google Scholar 

  • Griffith DP, Musher DM, Itin C (1976) Urease: the primary cause of infection-induced urinary stones. Invest Urol 13:346–350

    PubMed  CAS  Google Scholar 

  • Grimont F Grimont PAD (1992) The Genus Serratia. In: Ballows A, Trapper HG, Dworkin M, Tno WH, Schleifer KH (ed) The Prokaryotes. Springer, Berlin Heidelberg New York, pp 2822–2448

    Google Scholar 

  • Gupta SK, Berk RS, Masinick S, Hazlett LD (1994) Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Infect Immun 62:4572–4579

    PubMed  CAS  Google Scholar 

  • Guzman CA, Pruzzo C, LiPira G, Calegari L (1989) Role of adherence in pathogenesis of Enterococcus faecalis urinary tract infection and endocarditis Infect Immun 57:1834–1838

    PubMed  CAS  Google Scholar 

  • Gygi D, Bailey MJ, Allison C, Hughes C (1995) Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Mol Microbiol 15:761–769

    PubMed  CAS  Google Scholar 

  • Gygi D, Rahman MM, Lai HC, Carlson R, Guard-Petter J, Hughes C (1995) A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol Microbiol 17:1167–1175

    PubMed  CAS  Google Scholar 

  • Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    PubMed  CAS  Google Scholar 

  • Hartstein AI, Garber SB, Ward TT, Jones SR, Morthland VH (1981) Nosocomial urinary tract infection: a prospective evaluation of 108 catheterized patients. Infect Control 2:380–386

    PubMed  CAS  Google Scholar 

  • Hashmi S, Kelly E, Rogers SO, Gates J (2003) Urinary tract infection in surgical patients. Am J Surg 186:53–56

    PubMed  Google Scholar 

  • Hawthorn L, Reid G (1990) The effect of protein and urine on uropathogen adhesion to polymer substrata. J Biomed Mater Res 24:1325–1332

    PubMed  CAS  Google Scholar 

  • Hejazi A, Falkiner FR (1997) Serratia marcescens. J Med Microbiol 46:903–912

    PubMed  CAS  Google Scholar 

  • Herrmann B, Burman LG (1985) Pathogenesis of Escherichia coli cystitis and pyelonephritis: apparent lack of significance of bacterial motility and chemotaxis towards human urine. Infection 13:4–7

    PubMed  CAS  Google Scholar 

  • Hess P, Altenhofer A, Khan AS, Daryab N, Kim KS, Hacker J, Oelschlaeger TA (2004) A Salmonella fim homologue in Citrobacter freundii mediates invasion in vitro and crossing of the blood-brain barrier in the rat pup model. Infect Immun 72:5298–5307

    PubMed  CAS  Google Scholar 

  • Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017

    PubMed  CAS  Google Scholar 

  • Hochreiter W, Knoll T, Hess B (2003) [Pathophysiology, diagnosis and conservative therapy of non-calcium kidney calculi]. Ther Umsch 60:89–97

    PubMed  CAS  Google Scholar 

  • Hoyle BD, Alcantara J, Costerton JW (1992) Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother 36:2054–2056

    PubMed  CAS  Google Scholar 

  • Hull R, Rudy D, Donovan W, Svanborg C, Wieser I, Stewart C, Darouiche R (2000) Urinary tract infection prophylaxis using Escherichia coli 83972 in spinal cord injured patients. J Urol 163:872–877

    PubMed  CAS  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF III, Romeo T (2005) Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387

    PubMed  CAS  Google Scholar 

  • Izdebska-Szymona K, Laziuk D (1988) Comparison of some adhesive properties of Pseudomonas aeruginosa strains isolated from respiratory and urinary tract infections. Acta Microbiol Pol 37:281–293

    PubMed  CAS  Google Scholar 

  • Jain P, Parada JP, David A, Smith LG (1995) Overuse of the indwelling urinary tract catheter in hospitalized medical patients. Arch Intern Med 155:1425–1429

    PubMed  CAS  Google Scholar 

  • Jansen AM, Lockatell CV, Johnson DE, Mobley HL (2003) Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun 71:3607–3613

    PubMed  CAS  Google Scholar 

  • Jansen AM, Lockatell V, Johnson DE, Mobley HL (2004) Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun 72:7294–7305

    PubMed  CAS  Google Scholar 

  • Jantunen ME, Siitonen A, Koskimies O, Wikstrom S, Karkkainen U, Salo E, Saxen H (2000) Predominance of class II papG allele of Escherichia coli in pyelonephritis in infants with normal urinary tract anatomy. J Infect Dis 181:1822–1824

    PubMed  CAS  Google Scholar 

  • Jarvis WR, Marione WJ (1992) Predominant pathogens in hospital infections. J Antimicrob Chemother 29(Suppl A):19–24

    PubMed  Google Scholar 

  • John JF Jr, Sharbaugh RJ, Bannister ER (1982) Enterobacter cloacae: bacteremia, epidemiology, and antibiotic resistance. Rev Infect Dis 4:13–28

    PubMed  Google Scholar 

  • Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–128

    PubMed  CAS  Google Scholar 

  • Johnson JR (2003) Microbial virulence determinants and the pathogenesis of urinary tract infection. Infect Dis Clin North Am 17:261–278

    PubMed  Google Scholar 

  • Johnson JR, Stamm WE (1989) Urinary tract infections in women: diagnosis and treatment. Ann Intern Med 111:906–917

    PubMed  CAS  Google Scholar 

  • Johnson JR, Roberts PL, Olsen RJ, Moyer KA, Stamm WE (1990) Prevention of catheter-associated urinary tract infection with a silver oxide-coated urinary catheter: clinical and microbiologic correlates. J Infect Dis 162:1145–1150

    PubMed  CAS  Google Scholar 

  • Johnson DE, Russell RG, Lockatell CV, Zulty JC, Warren JW, Mobley HL (1993) Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection. Infect Immun 61:2748–2754

    PubMed  CAS  Google Scholar 

  • Jones BD, Mobley HL (1987) Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infect Immun 55:2198–2203

    PubMed  CAS  Google Scholar 

  • Jones BD, Lockatell CV, Johnson DE, Warren JW, Mobley HL (1990) Construction of a urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection. Infect Immun 58:1120–1123

    PubMed  CAS  Google Scholar 

  • Jones BV, Young R, Mahenthiralingam E, Stickler DJ (2004) Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun 72:3941–3950

    PubMed  CAS  Google Scholar 

  • Jones BV, Mahenthiralingam E, Sabbuba NA, Stickler DJ (2005) Role of swarming in the formation of crystalline Proteus mirabilis biofilms on urinary catheters. J Med Microbiol 54:807–813

    PubMed  Google Scholar 

  • Jones GL, Russell AD, Caliskan Z, Stickler DJ (2005) A strategy for the control of catheter blockage by crystalline Proteus mirabilis biofilm using the antibacterial agent triclosan. Eur Urol 48:838–845

    PubMed  Google Scholar 

  • Jorgensen SE, Short EC, Jr., kurtz HJ, Mussen HK, Wu GK (1976) Studies on the origin of the alpha-haemolysin produced by Escherichia coli. J Med Microbiol 9:173–189

    PubMed  CAS  Google Scholar 

  • Joyanes P, Pascual A, Martinez-Martinez L, Hevia A, Perea EJ (2000) In vitro adherence of Enterococcus faecalis and Enterococcus faecium to urinary catheters. Eur J Clin Microbiol Infect Dis 19:124–127

    PubMed  CAS  Google Scholar 

  • Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338

    PubMed  CAS  Google Scholar 

  • Karpuch J, Goldberg M, Kohelet D (1983) Neonatal bacteremia. A 4-year prospective study. Isr J Med Sci 19:963–966

    PubMed  CAS  Google Scholar 

  • Keefe WE (1976) Formation of crystalline deposits by several genera of the family Enterobacteriaceae. Infect Immun 14:590–592

    PubMed  CAS  Google Scholar 

  • Keller R, Pedroso MZ, Ritchmann R, Silva RM (1998) Occurrence of virulence-associated properties in Enterobacter cloacae. Infect Immun 66:645–649

    PubMed  CAS  Google Scholar 

  • Kjelleberg S, Steinberg PD, Givskov M, Gram L, Manefield M, de Nys R (1997) Do marine products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 13:85–93

    Google Scholar 

  • Kohler T, Curty LK, Barja F, van DC, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    PubMed  CAS  Google Scholar 

  • Koseoglu H, Asian G, Esen N, Sen BH, Coban H (2006) Ultrastructural stages of biofilm development of Escherichia coli on urethral catheters and effects of antibiotics on biofilm formation. Urology 68:942–946

    PubMed  Google Scholar 

  • Krajden S, Fuksa M, Lizewski W, Barton L, Lee A (1984) Proteus penneri and urinary calculi formation. J Clin Microbiol 19:541–542

    PubMed  CAS  Google Scholar 

  • Krajden S, Fuksa M, Petrea C, Crisp LJ, Penner JL (1987) Expanded clinical spectrum of infections caused by Proteus penneri. J Clin Microbiol 25:578–579

    PubMed  CAS  Google Scholar 

  • Kucheria R, Dasgupta P, Sacks SH, Khan MS, Sheerin NS (2005) Urinary tract infections: new insights into a common problem. Postgrad Med J 81:83–86

    PubMed  CAS  Google Scholar 

  • Kunin CM (1989) Blockage of urinary catheters: role of microorganisms and constituents of the urine on formation of encrustations. J Clin Epidemiol 42:835–842

    PubMed  CAS  Google Scholar 

  • Kunin CM, Douthitt S, Dancing J, Anderson J, Moeschberger M (1992) The association between the use of urinary catheters and morbidity and mortality among elderly patients in nursing homes. Am J Epidemiol 135:291–301

    PubMed  CAS  Google Scholar 

  • Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186:692–698

    PubMed  CAS  Google Scholar 

  • Lane MC, Lockatell V, Monterosso G, Lamphier D, Weinert J, Hebel JR, Johnson DE, Mobley HL (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73:7644–7656

    PubMed  CAS  Google Scholar 

  • Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611

    PubMed  CAS  Google Scholar 

  • Latta RK, Schur MJ, Toison DL, Altman E (1998) The effect of growth conditions on in vitro adherence, invasion, and NAF expression by Proteus mirabilis 7570. Can J Microbiol 44:896–904

    PubMed  CAS  Google Scholar 

  • Lee KK, Sheth HB, Wong WY, Sherburne R, Paranchych W, Hodges RS, Lingwood CA, Krivan H, Irvin RT (1994) The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol 11:705–713

    PubMed  CAS  Google Scholar 

  • Lee KK, Harrison BA, Latta R, Altman E (2000) The binding of Proteus mirabilis nonagglutinating fimbriae to ganglio-series asialoglycolipids and lactosyl ceramide. Can J Microbiol 46:961–966

    PubMed  CAS  Google Scholar 

  • Lehner A, Riedel K, Eberl L, Breeuwer P, Diep B, Stephan R (2005) Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J Food Prot 68:2287–2294

    PubMed  CAS  Google Scholar 

  • Leid JG, Shirtliff ME, Costerton JW, Stoodley AP (2002) Human leukocytes adhere to, penetrate and respond to Staphylococcus aureus biofilms. Infect Immun 70(11):6339–6345

    PubMed  CAS  Google Scholar 

  • Leid JG, Wilson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518

    PubMed  CAS  Google Scholar 

  • Leranoz S, Orus P, Berlanga M, Dalet F, Vinas M (1997) New fimbrial adhesins of Serratia marcescens isolated from urinary tract infections: description properties. J Urol 157:694–698

    PubMed  CAS  Google Scholar 

  • Lesprit P, Faurisson F, Join-Lambert O, Roudot-Thoraval F, Foglino M, Vissuzaine C, Carbon C (2003) Role of the quorum-sensing system in experimental pneumonia due to Pseudomonas aeruginosa in rats. Am J Respir Crit Care Med 167:1478–1482

    PubMed  Google Scholar 

  • Lewis CM Zervos MJ (1990) Clinical manifestations of enterococcal infection. Eur J Clin Microbiol Infect Dis 9:111–117

    PubMed  CAS  Google Scholar 

  • Li X, Zhao H, Geymonat L, Bahrani F, Johnson DE, Mobley HL (1997) Proteus mirabilis mannose-resistant, Proteus-like fimbriae: MrpG is located at the fimbrial tip and is required for fimbrial assembly. Infect Immun 65:1327–1334

    PubMed  CAS  Google Scholar 

  • Li X, Johnson DE, Mobley HL (1999) Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun 67:2822–2833

    PubMed  CAS  Google Scholar 

  • Li X, Lockatell CV, Johnson DE, Mobley HL (2002) Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol 45:865–874

    PubMed  CAS  Google Scholar 

  • Li X, Zhao H, Lockatell CV, Drachenberg CB, Johnson DE, Mobley HL (2002) Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun 70:389–394

    PubMed  CAS  Google Scholar 

  • Liang OD, Flock JI, Wadstrom T (1995) Isolation and characterisation of a vitronectin-binding surface protein from Staphylococcus aureus. Biochim Biophys Acta 1250:110–116

    PubMed  Google Scholar 

  • Lim Y, Shin SH, Jang IY, Rhee JH, Kim IS (1998) A human transferrin-binding protein of Staphylococcus aureus is immunogenic in vivo and has an epitope in common with human transferrin receptor. FEMS Microbiol Lett 166:225–230

    PubMed  CAS  Google Scholar 

  • Lindh E, Kjaeldgaard P, Frederiksen W, Ursing J (1991) Phenotypical properties of Enterobacter agglomerans (Pantoea agglomerans) from human, animal and plant sources. APMIS 99:347–352

    PubMed  CAS  Google Scholar 

  • Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388

    PubMed  CAS  Google Scholar 

  • Loomes LM, Senior BW, Kerr MA (1990) A proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin A1 (IgA1), IgA2, and IgG isotypes. Infect Immun 58:1979–1985

    PubMed  CAS  Google Scholar 

  • Loomes LM, Senior BW, Kerr MA (1992) Proteinases of Proteus spp.: purification, properties, and detection in urine of infected patients. Infect Immun 60:2267–2273

    PubMed  CAS  Google Scholar 

  • Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, Williams PH (2003) Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361:130–135

    PubMed  CAS  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996a) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  • Mack D, Haeder M, Siemssen N, Laufs R (1996b) Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J Infect Dis 174:881–884

    PubMed  CAS  Google Scholar 

  • Maki DG, Tambyah PA (2001) Engineering out the risk for infection with urinary catheters. Emerg Infect Dis 7:342–347

    PubMed  CAS  Google Scholar 

  • Maki DG, Hennekens CG, Phillips CW, Shaw WV, Bennett JV (1973) Nosocomial urinary tract infection with Serratia marcescens: an epidemiologic study. J Infect Dis 128:579–587

    PubMed  CAS  Google Scholar 

  • Maki DG, Knasinski V, Halvorson KT, Tambyah PA, Holcomb RG (1997) A prospective, randomized, investigator-blinded trial of a novel nitrofurazone-impregnated urinary catheter. Infect Control Hasp Epidemiol 18:50

    Google Scholar 

  • Martinez JJ, Hultgren SJ (2002) Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli. Cell Microbiol 4:19–28

    PubMed  CAS  Google Scholar 

  • Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812

    PubMed  CAS  Google Scholar 

  • Masood J, Shah N, Lane T, Barua JM (2003) Urethral catheter: a pain in the neck! Urol. Int 70:330–331

    PubMed  CAS  Google Scholar 

  • Massad G, Bahrani FK, Mobley HL (1994) Proteus mirabilis fimbriae: identification, isolation, and characterization of a new ambient-temperature fimbria. Infect Immun 62:1989–1994

    PubMed  CAS  Google Scholar 

  • Massad G, Lockatell CV, Johnson DE, Mobley HL (1994) Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary tract infection. Infect Immun 62:536–542

    PubMed  CAS  Google Scholar 

  • Massad G, Fulkerson JF, Jr., Watson DC, Mobley HL (1996) Proteus mirabilis ambient-temperature fimbriae: cloning and nucleotide sequence of the aft gene cluster. Infect Immun 64:4390–4395

    PubMed  CAS  Google Scholar 

  • Matthee K, Ciofu O, Sternberg C, Lindum PW, Campbell JI, Jensen P, Johnsen AH, Givskov M, Ohman DE, Molin S, Hoiby N, Kharazami A (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1459(6): 1349–1357

    Google Scholar 

  • McLean RJ, Nickel JC, Cheng KJ, Costerton JW (1988) The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit Rev Microbiol 16:37–79

    PubMed  CAS  Google Scholar 

  • McLean RJ, Lawrence JR, Korber DR, Caldwell DE (1991) Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis. J Urol 146:1138–1142

    PubMed  CAS  Google Scholar 

  • Millian SJ, Baldwin JN, Rheins MS (1960) Studies on the incidence of coagulase-positive staphylococci in a normal unconfined population. Am J Pub Health 50:791

    PubMed  CAS  Google Scholar 

  • Mobley HL, Belas R (1995) Swarming pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol 3:280–284

    PubMed  CAS  Google Scholar 

  • Mobley HL, Chippendale GR, Tenney JH, Warren JW (1986) Adherence to uroepithelial cells of Providencia stuartii isolated from the catheterized urinary tract. J Gen Microbiol 132:2863–2872

    PubMed  CAS  Google Scholar 

  • Mobley HL, Jones BD, Jerse AE (1986) Cloning of urease gene sequences from Providencia stuartii. Infect Immun 54:161–169

    PubMed  CAS  Google Scholar 

  • Mobley HL, Chippendale GR, Tenney JH, Hull RA, Warren JW (1987) Expression of type 1 fimbriae may be required for persistence of Escherichia coli in the catheterized urinary tract. J Clin Microbiol 25:2253–2257

    PubMed  CAS  Google Scholar 

  • Mobley HL, Chippendale GR, Tenney JH, Mayrer AR, Crisp LJ, Penner JL, Warren JW (1988) MR/K hemagglutination of Providencia stuartii correlates with adherence to catheters and with persistence in catheter-associated bacteriuria. J Infect Dis 157:264–271

    PubMed  CAS  Google Scholar 

  • Mobley HL, Belas R, Lockatell V, Chippendale G, Trifillis AL, Johnson DE, Warren JW (1996) Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64:5332–5340

    PubMed  CAS  Google Scholar 

  • Moellering RC (1992) Emergence of Enterococcus as a significant pathogen. Clin Infect Dis 14:1173–1176

    PubMed  Google Scholar 

  • Muller E, Takeda S, Shiro H, Goldmann D, Pier GB (1993) Occurrence of capsular polysaccharide/adhesin among clinical isolates of coagulase-negative staphylococci. J Infect Dis 168:1211–1218

    PubMed  CAS  Google Scholar 

  • Mulrooney SB, Lynch MJ, Mobley HL, Hausinger RP (1988) Purification, characterization, and genetic organization of recombinant Providencia stuartii urease expressed by Escherichia coli. J Bacteriol 170:2202–2207

    PubMed  CAS  Google Scholar 

  • Mulvey MA (2002) Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271

    PubMed  CAS  Google Scholar 

  • Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497

    PubMed  CAS  Google Scholar 

  • Murphy CA, Belas R (1999) Genomic rearrangements in the flagellin genes of Proteus mirabilis. Mol Microbiol 31:679–690

    PubMed  CAS  Google Scholar 

  • Murray BE (1990) The life times of the Enterococcus. Clin Microbiol Rev 3:46–65

    PubMed  CAS  Google Scholar 

  • Musher DM, Griffith DP, Yawn D, Rossen RD (1975) Role of urease in pyelonephritis resulting from urinary tract infection with Proteus. J Infect Dis 131:177–181

    PubMed  CAS  Google Scholar 

  • Musher DM, Lamm N, Darouiche RO, Young EJ, Hamill RJ, Landon GC (1994) The current spectrum of Staphylococcus aureus infection in a tertiary care hospital. Medicine (Baltimore) 73:186–208

    CAS  Google Scholar 

  • Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057

    PubMed  CAS  Google Scholar 

  • Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449

    PubMed  CAS  Google Scholar 

  • O’Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13:534–546

    PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    PubMed  CAS  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    PubMed  CAS  Google Scholar 

  • Oelschlaeger TA, Guerry P, Kopecko DJ (1993) Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc Natl Acad Sci USA 90:6884–6888

    PubMed  CAS  Google Scholar 

  • Oka T, Utsunomiya M, Ichikawa Y, Koide T, Takaha M, Mimaki T, Sonoda T (1985) Xanthine calculi in the patient with the Lesch-Nyhan syndrome associated with urinary tract infection. Urol Int 40:138–140

    PubMed  CAS  Google Scholar 

  • Old DC, Scott SS (1981) Hemagglutinins and fimbriae of Providencia spp. J Bacteriol 146:404–408

    PubMed  CAS  Google Scholar 

  • Old DC, Adegbola RA (1982) Haemagglutinins and fimbriae of Morganella, Proteus and Providencia. J Med Microbiol 15:551–564

    PubMed  CAS  Google Scholar 

  • Old DC, Adegbola R, Scott SS (1983) Multiple fimbrial haemagglutinins in Serratia species. Med Microbiol Immunol (Berl) 172:107–115

    CAS  Google Scholar 

  • Olson JC, McGuffie EM, Frank DW (1997) Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect Immun 65:248–256

    PubMed  CAS  Google Scholar 

  • Olson JC, Fraylick JE, McGuffie EM, Dolan KM, Yahr TL, Frank DW, Vincent TS (1999) Interruption of multiple cellular processes in HT-29 epithelial cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 67:2847–2854

    PubMed  CAS  Google Scholar 

  • Orskov F (1978) Virulence factors of the bacterial cell surface. J Infect Dis 137:630–633

    PubMed  CAS  Google Scholar 

  • Orskov I, Orskov F, Jann B, Jann K (1977) Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol Rev 41:667–710

    PubMed  CAS  Google Scholar 

  • Pamp SJ, Tolker-Neilsen T (2007) Multiple roles of biosurfactants in structural biofilm devlopment by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–2539

    PubMed  CAS  Google Scholar 

  • Park PW, Roberts DD, Grosso LE, Parks WC, Rosenbloom J, Abrams WR, Mecham RP (1991) Binding of elastin to Staphylococcus aureus. J Biol Chem 266:23399–23406

    PubMed  CAS  Google Scholar 

  • Patti JM, Allen BL, McGavin MJ, Hook M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    PubMed  CAS  Google Scholar 

  • Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl 28:1–79

    PubMed  CAS  Google Scholar 

  • Pedersen SS, Kharazmi A, Espersen F, Hoiby N (1990) Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58:3363–3368

    PubMed  CAS  Google Scholar 

  • Penner JL (1984) Genus XI Proteus. In: Krieg N, Holt J (eds) Bergey’s manual of systemic bacteriology, vol 1. The Williams & Wilkens Company, Baltimore

    Google Scholar 

  • Perry MB, MacLean LL (1994) The structure of the polysaccharide produced by Proteus vulgaris (ATCC 49990) Carbohydr Res 253:257–263

    PubMed  CAS  Google Scholar 

  • Plos K, Connell H, Jodal U, Marklund BI, Marild S, Wettergren B, Svanborg C (1995) Intestinal carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract infection in young children. J Infect Dis 171:625–631

    PubMed  CAS  Google Scholar 

  • Podschun R, Ullmann U (1992) Klebsiella capsular type K7 in relation to toxicity, susceptibility to phagocytosis and resistance to serum J Med Microbiol 36:250–254

    PubMed  CAS  Google Scholar 

  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603

    PubMed  CAS  Google Scholar 

  • Podschun R, Fischer A, Ullmann U (2001) Characterisation of Hafnia alvei isolates from human clinical extra-intestinal specimens: haemagglutinins, serum resistance and siderophore synthesis. J Med Microbiol 50:208–214

    PubMed  CAS  Google Scholar 

  • Ramphal R, Arora SK, Ritchings BW (1996) Recognition of mucin by the adhesin-flagellar system of Pseudomonas aeruginosa. Am J Respir Crit Care Med 154:S170–S174

    PubMed  CAS  Google Scholar 

  • Rather PN (2005) Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7:1065–1073

    PubMed  CAS  Google Scholar 

  • Rauss KF (1936) The systematic position of Morgan’s bacillus. J Pathol Bacteriol 42:183–192

    Google Scholar 

  • Reid G, van der Mei HC, Tieszer C, Busscher HJ (1996) Uropathogenic Escherichia coli adhere to urinary catheters without using fimbriae. FEMS Immunol Med Microbiol 16:159–162

    PubMed  CAS  Google Scholar 

  • Reid G, Howard J, Gan BS (2001) Can bacterial interference prevent infection? Trends Microbiol 9:424–428

    PubMed  CAS  Google Scholar 

  • Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187:3477–3485

    PubMed  CAS  Google Scholar 

  • Riley DK, Classen DC, Stevens LE, Burke JP (1995) A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. Am J Med 98:349–356

    PubMed  CAS  Google Scholar 

  • Robbins JD, Robbins JB (1984) Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis 150:436–449

    PubMed  CAS  Google Scholar 

  • Roberts JA, Fussell EN, Kaack MB (1990) Bacterial adherence to urethral catheters. J Urol 144:264–269

    PubMed  CAS  Google Scholar 

  • Romling U, Sierralta WD, Eriksson K, Normark S (1998) Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264

    PubMed  CAS  Google Scholar 

  • Rosenheim ML (1935) Mandelic acid in the treatment of urinary tract infections. Lancet 1:1032–1035

    Google Scholar 

  • Rozalski A, Sidorczyk Z, Kotelko K (1997) Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65–89

    PubMed  CAS  Google Scholar 

  • Rucks EA, Fraylick JE, Brandt LM, Vincent TS, Olson JC (2003) Cell line differences in bacterially translocated ExoS ADP-ribosyltransferase substrate specificity. Microbiology 149:319–331

    PubMed  CAS  Google Scholar 

  • Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862

    PubMed  CAS  Google Scholar 

  • Ruoff KL, de la ML, Murtagh MJ, Spargo JD, Ferraro MJ (1990) Species identities of enterococci isolated from clinical specimens. J Clin Microbiol 28:435–437

    PubMed  CAS  Google Scholar 

  • Sabbuba N, Hughes G, Stickler DJ (2002) The migration of Proteus mirabilis and other urinary tract pathogens over Foley catheters. BJU Int 89:55–60

    PubMed  CAS  Google Scholar 

  • Saint S (2000) Clinical and economic consequences of nosocomial catheter-related bacteriuria. Am J Infect Control 28:68–75

    PubMed  CAS  Google Scholar 

  • Sandoe JA, Witherden IR, Cove JH, Heritage J, Wilcox MH (2003) Correlation between enterococcal biofilm formation in vitro and medical-device-related infection potential in vivo. J Med Microbiol 52:547–550

    PubMed  Google Scholar 

  • Sareneva T, Holthofer H, Korhonen TK (1990) Tissue-binding affinity of Proteus mirabilis fimbriae in the human urinary tract. Infect Immun 58:3330–3336

    PubMed  CAS  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    PubMed  CAS  Google Scholar 

  • Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, Hamood AN (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53:841–853

    PubMed  CAS  Google Scholar 

  • Schaberg DR, Culver DH, Gaynes RP (1991) Major trends in the microbial etiology of nosocomial infection. Am J Med 91:72S–75S

    PubMed  CAS  Google Scholar 

  • Schembri MA, Blom J, Krogfelt KA, Klemm P (2005) Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73:4626–4633

    PubMed  CAS  Google Scholar 

  • Schneider R, Lockatell CV, Johnson D, Belas R (2002) Detection and mutation of a luxS-encoded autoinducer in Proteus mirabilis. Microbiology 148:773–782

    PubMed  CAS  Google Scholar 

  • Schwarz-Linek U, Hook M, Potts JR (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52:631–641

    PubMed  CAS  Google Scholar 

  • Schweizer F, Jiao H, Hindsgaul O, Wong WY, Irvin RT (1998) Interaction between the pili of Pseudomonas aeruginosa PAK and its carbohydrate receptor beta-D-GalNAc(1 - > 4)beta-D-Gal analogs. Can J Microbiol 44:307–311

    PubMed  CAS  Google Scholar 

  • Scott TG (1960) The bacteriology of urinary infections in paraplegia. J Clin Pathol 13:54–57

    PubMed  CAS  Google Scholar 

  • Senior BW, Albrechtsen M, Kerr MA (1987) Proteus mirabilis strains of diverse type have IgA protease activity. J Med Microbiol 24:175–180

    PubMed  CAS  Google Scholar 

  • Senior BW, Albrechtsen M, Kerr MA (1988) A survey of IgA protease production among clinical isolates of Proteeae. J Med Microbiol 25:27–31

    PubMed  CAS  Google Scholar 

  • Senior BW, Leslie DL (1986) Rare occurrence of Proteus vulgaris in faeces: a reason for its rare association with urinary tract infections. J Med Microbiol 21:139–144

    PubMed  CAS  Google Scholar 

  • Serruys-Schoutens E, Rost F, Depre G (1984) A nosocomial epidemic of Serratia liquefaciens urinary tract infection after cystometry. Eur J Clin Microbiol 3:316–317

    PubMed  CAS  Google Scholar 

  • Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS (1999) Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67:193–200

    PubMed  CAS  Google Scholar 

  • Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE (2001) Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372

    PubMed  CAS  Google Scholar 

  • Signas C, Raucci G, Jonsson K, Lindgren PE, Anantharamaiah GM, Hook M, Lindberg M (1989) Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci USA 86:699–703

    PubMed  CAS  Google Scholar 

  • Silverblatt FJ, Olek I (1978) Effects of pili on susceptibility of Proteus mirabilis. to phagocytosis and on adherence to bladder cells. In: Kass E, Brumfitt W (ed) Infections of the urinary tract. University of Chicago Press, Chicago, pp 49–59

    Google Scholar 

  • Silverman DE, Stanley TA (1983) Management of infection stones: the Stanford experience. Medicine (Baltimore) 62:44–51

    CAS  Google Scholar 

  • Simoons-Smit AM, Verweij-van Vught AM, MacLaren DM (1986) The role of K antigens as virulence factors in Klebsiella. J Med Microbiol 21:133–137

    PubMed  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    PubMed  CAS  Google Scholar 

  • Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808

    PubMed  CAS  Google Scholar 

  • Stahl SJ, Stewart KR, Williams FD (1983) Extracellular slime associated with Proteus mirabilis during swarming. J Bacteriol 154:930–937

    PubMed  CAS  Google Scholar 

  • Stamm WE (1991) Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med 91:65S–71S

    PubMed  CAS  Google Scholar 

  • Stamm WE, Hooton TM (1993) Management of urinary tract infections in adults. N Engl J Med 329:1328–1334

    PubMed  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    PubMed  CAS  Google Scholar 

  • Stickler D, Morris N, Moreno MC, Sabbuba N (1998a) Studies on the formation of crystalline bacterial biofilms on urethral catheters. Eur J Clin Microbiol Infect Dis 17:649–652

    PubMed  CAS  Google Scholar 

  • Stickler DJ, Morris NS, McLean RJ, Fuqua C (1998b) Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64:3486–3490

    PubMed  CAS  Google Scholar 

  • Stickler DJ, Jones GL, Russell AD (2003) Control of encrustation and blockage of Foley catheters. Lancet 361:1435–1437

    PubMed  CAS  Google Scholar 

  • Stickler DJ, Lear JC, Morris NS, Macleod SM, Downer A, Cadd DH, Feast WJ (2006) Observations on the adherence of Proteus mirabilis onto polymer surfaces. J Appl Microbiol 100:1028–1033

    PubMed  CAS  Google Scholar 

  • Sturgill G, Rather PN (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol Microbiol 51:437–446

    PubMed  CAS  Google Scholar 

  • Sukupolvi S, Lorenz RG, Gordon JI, Bian Z, Pfeifer JD, Normark SJ, Rhen M (1997) Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect Immun 65:5320–5325

    PubMed  CAS  Google Scholar 

  • Switalski LM, Speziale P, Hook M (1989) Isolation and characterization of a putative collagen receptor from Staphylococcus aureus strain Cowan 1. J Biol Chem 264:21080–21086

    PubMed  CAS  Google Scholar 

  • Tambyah PA, Maki DG (2000) Catheter-associated urinary tract infection is rarely symptomatic: a prospective study of 1,497 catheterized patients. Arch Intern Med 160:678–82

    PubMed  CAS  Google Scholar 

  • Tarkkanen AM, Allen BL, Williams PH, Kauppi M, Haahtela K, Siitonen A, Orskov I, Orskov F, Clegg S, Korhonen TK (1992) Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection. Infect Immun 60:1187–1192

    PubMed  CAS  Google Scholar 

  • Thankavel K, Madison B, Ikeda T, Malaviya R, Shah AH, Arumugam PM, Abraham SN (1997) Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J Clin Invest 100:1123–1136

    PubMed  CAS  Google Scholar 

  • Tojo M, Yamashita N, Goldmann DA, Pier GB (1988) Isolation and characterization of a capsular polysaccharide adhesin from Staphylococcus epidermidis. J Infect Dis 157:713–722

    PubMed  CAS  Google Scholar 

  • Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penades JR, Lasa I (2001) The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545

    PubMed  CAS  Google Scholar 

  • Toison DL, Barrigar DL, McLean RJ, Altman E (1995) Expression of a nonagglutinating fimbria by Proteus mirabilis. Infect Immun 63:1127–1129

    Google Scholar 

  • Toison DL, Harrison BA, Latta RK, Lee KK, Altman E (1997) The expression of nonagglutinating fimbriae and its role in Proteus mirabilis adherence to epithelial cells. Can J Microbiol 43:709–717

    Google Scholar 

  • Tormo MA, Knecht E, Gotz F, Lasa I, Penades JR (2005) Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:2465–2475

    PubMed  CAS  Google Scholar 

  • Trautner BW, Darouiche RO (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32:177–183

    PubMed  Google Scholar 

  • Trautner BW, Darouiche RO, Hull RA, Hull S, Thornby JI (2002) Pre-inoculation of urinary catheters with Escherichia coli 83972 inhibits catheter colonization by Enterococcus faecalis. J Urol 167:375–379

    PubMed  Google Scholar 

  • Trautner BW, Hull RA, Darouiche RO (2003) Escherichia coli 83972 inhibits catheter adherence by a broad spectrum of uropathogens. Urology 61:1059–1062

    PubMed  Google Scholar 

  • Trautner BW, Hull RA, Darouiche RO (2005) Colicins prevent colonization of urinary catheters. J Antimicrob Chemother 56:413–415

    PubMed  CAS  Google Scholar 

  • Tseng CC, Huang JJ, Ko WC, Yan JJ, Wu JJ (2001) Decreased predominance of papG class II allele in Escherichia coli strains isolated from adults with acute pyelonephritis and urinary tract abnormalities. J Urol 166:1643–1646

    PubMed  CAS  Google Scholar 

  • Tuazon CU, Sheagren JN (1974) Increased rate of carriage of Staphylococcus aureus among narcotic addicts. J Infect Dis 129:725–727

    PubMed  CAS  Google Scholar 

  • Tunney MM, Jones DS, Gorman SP (1999) Biofilms and biofilm-related encrustration of urinary tract devices. In: Doyle RJ (ed) Methods in enzymology. Academic, San Diego, pp 558–566

    Google Scholar 

  • Tunney MM, Gorman SP (2002) Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials 23:4601–4608

    PubMed  CAS  Google Scholar 

  • Uesugi A, Oguri T, Igari J (1996) [Studies on coagulase negative Staphylococci isolated from urine]. Kansenshogaku Zasshi 70:180–186

    PubMed  CAS  Google Scholar 

  • Uhrin D, Brisson JR, MacLean LL, Richards JC, Perry MB (1994) Application of 1D and 2D NMR techniques to the structure elucidation of the O-polysaccharide from Proteus mirabilis O:57. J Biomol NMR 4:615–630

    PubMed  CAS  Google Scholar 

  • Ulett GC, Mabbett AN, Fung KC, Webb RI, Schembri MA (2007) The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology 153:2321–2331

    PubMed  CAS  Google Scholar 

  • Ullmann U (1986) Bacterial infection agents in hospitalized patients. Zentralbl Bakteriol Mikrobiol Hyg [B] 183:103–113

    CAS  Google Scholar 

  • Vapnek JM, Maynard FM, Kim J (2003) A prospective randomized trial of the LoFric hydrophilic coated catheter versus conventional plastic catheter for clean intermittent catheterization. J Urol 169:994–998

    PubMed  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    PubMed  CAS  Google Scholar 

  • Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R (1999) ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32:825–36

    PubMed  CAS  Google Scholar 

  • Wang X, Preston JF, III, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734

    PubMed  CAS  Google Scholar 

  • Warren JW (1996) Clinical presentations and epidemiology of urinary tract infections. In: Mobley H. L, Warren JW (eds) Urinary tract infections: molecular pathogenesis and clinical management. ASM Press, Washington

    Google Scholar 

  • Warren JW (1997) Catheter-associated urinary tract infections. Infect Dis Clin North Am 11:609–622

    PubMed  CAS  Google Scholar 

  • Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC (1982) A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146:719–723

    PubMed  CAS  Google Scholar 

  • Warren JW, Damron D, Tenney JH, Hoopes JM, Deforge B, Muncie HL, Jr (1987) Fever, bacteremia, and death as complications of bacteriuria in women with long-term urethral catheters. J Infect Dis 155:1151–1158

    PubMed  CAS  Google Scholar 

  • Wei JR, Lai HC (2006) N-acylhomoserine lactone-dependent cell-to-cell communication and social behavior in the genus Serratia. Int J Med Microbiol 296:117–124

    PubMed  CAS  Google Scholar 

  • Williams FD, Schwarzhoff RH (1978) Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32:101–122

    PubMed  CAS  Google Scholar 

  • Williams P, Lambert PA, Brown MR, Jones RJ (1983) The role of the O and K antigens in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J Gen Microbiol 129:2181–2191

    PubMed  CAS  Google Scholar 

  • Wilson R, Dowling RB (1998) Lung infections. 3 Pseudomonas aeruginosa and other related species Thorax 53:213–219

    CAS  Google Scholar 

  • Wray SK, Hull SI, Cook RG, Banish J, Hull RA (1986) Identification and characterization of a uroepithelial cell adhesin from a uropathogenic isolate of Proteus mirabilis. Infect Immun 54:43–49

    PubMed  CAS  Google Scholar 

  • Wright KJ, Seed PC, Hultgren SJ (2005) Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73:7657–7668

    PubMed  CAS  Google Scholar 

  • Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol

    Google Scholar 

  • Yakubu DE, Old DC, Senior BW (1989) The haemagglutinins and fimbriae of Proteus penneri. J Med Microbiol 30:279–284

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Ariyoshi A, Amako K (1985) Fimbria-mediated adherence of Serratia marcescens strain US5 to human urinary bladder surface. Microbiol Immunol 29:677–681

    PubMed  CAS  Google Scholar 

  • Zaidi TS, Fleiszig SM, Preston MJ, Goldberg JB, Pier GB (1996) Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 37:976–986

    PubMed  CAS  Google Scholar 

  • Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103

    PubMed  CAS  Google Scholar 

  • Zhu H, Bandara R, Conibear TC, Thuruthyil SJ, Rice SA, Kjelleberg S, Givskov M, Willcox MD (2004) Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection. Invest Ophthalmol Vis Sci 45:1897–1903

    PubMed  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    PubMed  CAS  Google Scholar 

  • Zogaj X, Bokranz W, Nimtz M, Romling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158

    PubMed  CAS  Google Scholar 

  • Zunino P, Geymonat L, Allen AG, Legnani-Fajardo C, Maskell DJ (2000) Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol Med Microbiol 29:137–143

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shirtliff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’May, G.A., Jacobsen, S.M., Stickler, D.J., Mobley, H.L.T., Shirtliff, M.E. (2008). Complicated Urinary Tract Infections due to Catheters. In: Shirtliff, M., Leid, J.G. (eds) The Role of Biofilms in Device-Related Infections. Springer Series on Biofilms, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68119-9_6

Download citation

Publish with us

Policies and ethics