Skip to main content

Immune Responses to Indwelling Medical Devices

  • Chapter
  • 1023 Accesses

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 3))

Abstract

Implanted medical devices have offered clinical hope to patients who either have critical illnesses or have more chronic problems such as joint destruction. No doubt, these devices have saved many lives and improved the quality of life of hundreds of thousands of people. Indeed, the use of indwelling devices has reached epic proportions in human medicine over the last three decades. One of the unintended consequences has been an accompanying rise in the infection rate in patients, which is directly related to the presence of these devices in humans. This is problematic because the devices are colonized by communities of microorganisms, termed biofilms, that are highly resistant to antimicrobial challenge and to destruction from the human host and its defenses. Over the past decade, there has been much progress on understanding how and why these communities are less susceptible to antimicrobial agents. However, many questions regarding the resistance of these communities to human host defenses are still unanswered. This chapter discusses the current knowledge of how the human immune system responds not only to the presence of indwelling medical devices, but also to the communities that colonize them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arciola CR, Cervellati M, Pirini V, Gamberini S, Montanaro L (2001) Staphylococci in orthopaedic surgical wounds. New Microbiol 24:365–369

    PubMed  CAS  Google Scholar 

  • Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    Article  PubMed  CAS  Google Scholar 

  • Bahebeck J, Bedimo R, Eyenga V, Kouamfack C, Kingue T, Nierenet M, Sosso M (2004) The management of musculoskeletal infection in HIV carriers. Acta Orthop Belg 70:355–360

    PubMed  Google Scholar 

  • Bass DA, DeChatelet LR, Burk RF, Shirley P, Szejda P (1977) Polymorphonuclear leukocyte bactericidal activity and oxidative metabolism during glutathione peroxidase deficiency. Infect Immun 18:78–84

    PubMed  CAS  Google Scholar 

  • Bayer AS, Speert DP, Park S, Tu J, Witt M, Nast CC, Norman DC (1991) Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun 59:302–308

    PubMed  CAS  Google Scholar 

  • Belzunegui J, Gonzalez C, Lopez L, Plazaola I, Maiz O, Figueroa M (1997) Osteoarticular and muscle infectious lesions in patients with the human immunodeficiency virus. Clin Rheumatol 16:450–453

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yehuda A, Weksler ME (1992) Host resistance and the immune system. Clin Geriatr Med 8:701–711

    PubMed  CAS  Google Scholar 

  • Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Ilstrup DM, Harmsen WS, Osmon DR (1998) Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 27:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Biviji AA, Paiement GD, Steinbach LS (2002) Musculoskeletal manifestations of human immunodeficiency virus infection. J Am Acad Orthop Surg 10:312–320

    PubMed  Google Scholar 

  • Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Hoiby N, Givskov M (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151(pt 2):373–383

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    PubMed  CAS  Google Scholar 

  • Brause BD (1986) Infections associated with prosthetic joints. Clin Rheum Dis 12:523–536

    PubMed  CAS  Google Scholar 

  • Brown SM, Howell ML, Vasil ML, Anderson AJ, Hassett DJ (1995) Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol 177:6536–6544

    PubMed  CAS  Google Scholar 

  • Buommino E, Morelli F, Metafora S, Rossano F, Perfetto B, Baroni A, Tufano MA (1999) Porin from Pseudomonas aeruginosa induces apoptosis in an epithelial cell line derived from rat seminal vesicles. Infect Immun 67:4794–4800

    PubMed  CAS  Google Scholar 

  • Burrows LL, Stark M, Chan C, Glukhov E, Sinnadurai S, Deber CM (2006) Activity of novel non-amphipathic cationic antimicrobial peptides against Candida species. J Antimicrob Chemother 57:899–907

    Article  PubMed  CAS  Google Scholar 

  • Burton E, Gawande PV, Yakandawala N, LoVertri K, Shanel GG, Romer T, Friesen AD, Madhyastha S (2006) Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother 50:1835–1840

    Article  PubMed  CAS  Google Scholar 

  • Busscher HJ, Geertsema-Doornbusch GI, van der Mei HC (1997) Adhesion to silicone rubber of yeasts and bacteria isolated from voice prostheses: influence of salivary conditioning films. J Biomed Mater Res 34:201–209

    Article  PubMed  CAS  Google Scholar 

  • Caraher EM, Gumulapurapu K, Taggart CC, Murphy P, McClean S, Callaghan M (2007) The effect of recombinant human lactoferrin on growth and the antibiotic susceptibility of the cystic fibrosis pathogen Burkholderia cepacia complex when cultured planktonically or as biofilms. J Antimicrob Chemother 60:546–554

    Article  PubMed  CAS  Google Scholar 

  • Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Ann Rev Physiol 59:63–88

    Article  CAS  Google Scholar 

  • Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541

    Article  PubMed  CAS  Google Scholar 

  • Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Mocchegiani F, Silverstri C, Licci A, Skerlavaj B, Zanetti M, Saba V, Scalise G (2006) Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptides 27:2104–2110

    Article  PubMed  CAS  Google Scholar 

  • Culver DH, Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, Banerjee SN, Edwards JR, Tolson JS, Henderson TS (1991) Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am J Med 91:152S–157S

    Article  PubMed  CAS  Google Scholar 

  • Cunnion KM, Lee JC, Frank MM (2001) Capsule production and growth phase influence binding of complement to Staphylococcus aureus. Infect Immun 69:6796–6803

    Article  PubMed  CAS  Google Scholar 

  • Dallegri F, Ottonello L (1997) Tissue injury in neutrophilic inflammation. Inflamm Res 46:382–391

    Article  PubMed  CAS  Google Scholar 

  • de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695

    Article  PubMed  Google Scholar 

  • Devaney JM, Greene CM, Taggart CC, Carroll TP, O’Neill SJ, McElvaney NG (2003) Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Lett 544:129–132

    Article  PubMed  CAS  Google Scholar 

  • Donabedian H, Gallin JI (1983) The hyperimmunoglobulin E recurrent-infection (Job’s) syndrome. A review of the NIH experience and the literature. Medicine 62:195–208

    Article  PubMed  CAS  Google Scholar 

  • Doring G, Goldstein W, Roll A, Schiotz PO, Hoiby N, Botzenhart K (1985) Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infect Immun 49:557–562

    PubMed  CAS  Google Scholar 

  • Dougherty SH, Simmons RL (1989) Endogenous factors contributing to prosthetic device infections. Infect Dis Clin North Am 3:199–209

    PubMed  CAS  Google Scholar 

  • Dransfield I, Buckle AM, Savill JS, McDowall A, Haslett C, Hogg N (1994) Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol 153:1254–1263

    PubMed  CAS  Google Scholar 

  • Duff GP, Lachiewicz PF, Kelley SS (1996) Aspiration of the knee joint before revision arthroplasty. Clin Orthop Relat Res 132–139

    Google Scholar 

  • Eberhard J, Menzel N, Dommisch H, Winter J, Jepsen S, Mutters R (2008) The stage of native biofilm formation determines the gene expression of human beta-defensin-2, psoriasin, ribonuclease 7 and inflammatory mediators: a novel approach for stimulation of keratinocytes with in situ formed biofilms. Oral Microbiol Immunol 23:21–28

    PubMed  CAS  Google Scholar 

  • Eckert R, He J, Yarbrough DK, Qi F, Anderson MH, Shi W (2006a) Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother 50:3651–3657

    PubMed  CAS  Google Scholar 

  • Eckert R, Brady KM, Greenberg EP, Qi F, Yarbrough DK, He J, McHardy I, Anderson MH, Shi W (2006b) Enhancement of antimicrobial activity against pseudomonas aeruginosa by coadministration of G10KHc and tobramycin. Antimicrob Agents Chemother 50:3833–3838

    Article  PubMed  CAS  Google Scholar 

  • Eckmann L (2005) Defence molecules in intestinal innate immunity against bacterial infections. Curr Opin Gastroenterol 21:147–151

    Article  PubMed  CAS  Google Scholar 

  • Ellison RT III, Giehl TJ, LaForce FM (1988) Damage of the outer membrane of enteric gramnegative bacteria by lactoferrin and transferrin. Infect Immun 56:2774–2781

    PubMed  CAS  Google Scholar 

  • Elssner A, Duncan M, Gavrilin M, Wewers MD (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 172:4987–4994

    PubMed  CAS  Google Scholar 

  • Epelman S, Stack D, Bell C, Wong E, Neely GG, Krutzik S, Miyake K, Kubes P, Zbytnuik LD, Ma LL, Xie X, Woods DE, Mody CH (2004) Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs. J Immunol 173:2031–2040

    PubMed  CAS  Google Scholar 

  • Ernst RK, Hajjar AM, Tsai JH, Moskowitz SM, Wilson CB, Miller SI (2003) Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. J Endotoxin Res 9:395–400

    PubMed  CAS  Google Scholar 

  • Fedtke I, Gotz F, Peschel A (2004) Bacterial evasion of innate host defenses — the Staphylococcus aureus lesson. Int J Med Microbiol 294:189–194

    Article  PubMed  CAS  Google Scholar 

  • Fick RB Jr, Baltimore RS, Squier SU, Reynolds HY (1985) IgG proteolytic activity of Pseudomonas aeruginosa in cystic fibrosis. J Infect Dis 151:589–598

    PubMed  Google Scholar 

  • Francois P, Vaudaux P, Lew PD (1998) Role of plasma and extracellular matrix proteins in the physiopathology of foreign body infections. Ann Vasc Surg 12:34–40

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen B, Koch C, Hoiby N (1997) Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 23:330–335

    Article  PubMed  CAS  Google Scholar 

  • Freestone PP, Lyte M, Neal CP, Maggs AF, Haigh RD, Williams PH (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182:6091–6098

    Article  PubMed  CAS  Google Scholar 

  • Gill PJ, Goddard E, Beatty DW, Hoffman EB (1992) Chronic granulomatous disease presenting with osteomyelitis: favorable response to treatment with interferon-gamma. J Pediatr Orthop 12:398–400

    PubMed  CAS  Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  PubMed  CAS  Google Scholar 

  • Hassett DJ, Schweizer HP, Ohman DE (1995) Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol 177:6330–6337

    PubMed  CAS  Google Scholar 

  • Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT, Ochsner U, Vasil ML (1996) Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased Superoxide dismutase and catalase activities. J Bacteriol 178:3996–4003

    PubMed  CAS  Google Scholar 

  • Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and Superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093

    Article  PubMed  CAS  Google Scholar 

  • Hatti S, Ravindra S, Satpathy A, Kulkarni RD, Parande MV (2007) Biofilm inhibition and anti-microbial activity of a dentifrice containing salivary substitutes. Int J Dent Hyg 5:218–224

    Article  PubMed  CAS  Google Scholar 

  • Hauber HP, Tulic MK, Tsicopoulos A, Wallaert B, Olivenstein R, Daigneault P, Hamid Q (2005) Toll-like receptors 4 and 2 expression in the bronchial mucosa of patients with cystic fibrosis. Can Respir J 12:13–18

    PubMed  Google Scholar 

  • Haussier S, Tummler B, Weissbrodt H, Rohde M, Steinmetz I (1999) Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29:621–625

    Google Scholar 

  • Haussler S, Ziegler I, Lottel A, von Gotz F, Rohde M, Wehmhohner D, Saravanamuthu S, Tummler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301

    Article  PubMed  Google Scholar 

  • Hoffmann JA (2003) The immune response of Drosophila. Nature 426(6962):33–38

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Hoiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agent Chemother 51:3677–3687

    Article  CAS  Google Scholar 

  • Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D (1995) Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood 85:532–540

    PubMed  CAS  Google Scholar 

  • Hoyle BD, Jass J, Costerton JW (1990) The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother 26:1–6

    Article  PubMed  CAS  Google Scholar 

  • Janatova J (2000) Activation and control of complement, inflammation, and infection associated with the use of biomedical polymers. ASAIO J 46:S53–S62

    Article  PubMed  CAS  Google Scholar 

  • Jensen E, Kharazmi A, Hoiby N, Costerton J (1992) Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. APMIS 100:727–733

    PubMed  CAS  Google Scholar 

  • Jensen E, Kharazmi A, Lam K, Costerton J, Hoiby N (1990) Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun 58:2383–2385

    PubMed  CAS  Google Scholar 

  • Jensen ET, Kharazmi A, Garred P, Kronborg G, Fomsgaard A, Mollnes TE, Hoiby N (1993) Complement activation by Pseudomonas aeruginosa biofilms. Microb Pathog 15:377–388

    Article  PubMed  CAS  Google Scholar 

  • Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Giskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4239–4239

    Google Scholar 

  • Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176

    PubMed  CAS  Google Scholar 

  • Johnston JW, Coussens NP, Allen S, Houtman JC, Turner KH, Zaleski A, Ramaswamy S, Gibson BW, Apicella MA (2008) Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem 283:855–865

    Article  PubMed  CAS  Google Scholar 

  • Julia MR, Serra P, Matamoros N, Raga S, Martinez P (1998) Small cytoplasmic antigens from Pseudomonas aeruginosa stimulate gammadelta T lymphocytes. Scand J Immunol 48:672–678

    Article  PubMed  CAS  Google Scholar 

  • Kaplanski G, Marin V, Montera-Julian F, Mantovani A, Farnarier C (2003) IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 24:25–29

    Article  PubMed  CAS  Google Scholar 

  • Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S (2000) Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology 146:2531–2541

    PubMed  CAS  Google Scholar 

  • Kazmierczak BI, Jou TS, Mostov K, Engel JN (2001) Rho GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cell Microbiol 3:85–98

    Article  PubMed  CAS  Google Scholar 

  • Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    PubMed  CAS  Google Scholar 

  • Khanna G, Kao SC, Kirby P, Sato Y (2005) Imaging of chronic granulomatous disease in children. Radiographics 25:1183–1195

    Article  PubMed  Google Scholar 

  • Kirchner KK, Wagener JS, Khan TZ, Copenhaver SC, Accurso FJ (1996) Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am J Respir Crit Care Med 154:1426–1429

    PubMed  CAS  Google Scholar 

  • Kirschke H, Wiederanders B (1994) Cathepsin S and related lysosomal endopeptidases. Methods Enzymol 244:500–511

    Article  PubMed  CAS  Google Scholar 

  • Krall R, Schmidt G, Aktories K, Barbieri JT (2000) Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68:6066–6068

    Article  PubMed  CAS  Google Scholar 

  • Leid JG, Shirtliff ME, Costerton JW, Stoodley AP (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345

    Article  PubMed  CAS  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysac-charide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518

    PubMed  CAS  Google Scholar 

  • Leid JG, Cope EK, O’Toole G, Shirtliff M (2008) Flagella in P. aeruginosa mediates human leukocyte cytokine cross talk, production of lactoferrin, and bacterial biofilm killing. Submitted.

    Google Scholar 

  • Leitch EC, Willcox MD (1999a) Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. J Med Microbiol 48:867–871

    PubMed  CAS  Google Scholar 

  • Leitch EC, Willcox MD (1999b) Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin. Curr Eye Res 19:12–19

    Article  PubMed  CAS  Google Scholar 

  • Lorenz E, Chemotti DC, Vandal K, Tessier PA (2004) Toll-like receptor 2 represses nonpilus adhesin-induced signaling in acute infections with the Pseudomonas aeruginosa pilA mutant. Infect Immun 72:4561–4569

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Roe F, Jesaitis A, Lewandowski Z (1998) Resistance of biofilms to the catalase inhibitor 3-amino-l,2, 4-triazole. Biotechnol Bioeng 60:135

    Article  PubMed  CAS  Google Scholar 

  • Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R,Williams PH (2003) Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361:130–135

    Article  PubMed  CAS  Google Scholar 

  • Major NM, Tehranzadeh J (1997) Musculoskeletal manifestations of AIDS. Radiol Clin North Am 35:1167–1189

    PubMed  CAS  Google Scholar 

  • Martinez LR, Casadevall A (2006) Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial molecules produced by the innate immune system. Infect Immun 74:6118–6123

    Article  PubMed  CAS  Google Scholar 

  • Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JI, Jensen P, Johnsen AH, Givskov M, Ohman DE, Molin S, Hoiby N, Kharazmi A (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357

    PubMed  CAS  Google Scholar 

  • Matsui H, Wagner VE, Hill DB, Schwab UE, Roges TD, Button B, Taylor RM II, Superfine R, Rubinstein M, Iglewski BH, Boucher RC (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103:18131–18136

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2002) Type IV pili and twitching motility. Ann Rev Microbiol 56:289–314

    Article  CAS  Google Scholar 

  • Medvedev AE, Kopydlowski KM, Vogel SN (2000) Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164:5564–5574

    PubMed  CAS  Google Scholar 

  • Melnikoff MJ, Horan PK, Morahan PS (1989) Kinetics of changes in peritoneal-cell populations following acute inflammation. Cell Immunol 118:178–191

    Article  Google Scholar 

  • Meluleni GJ, Grout M, Evans DJ, Pier GB (1995) Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J Immunol 155:2029–2038

    PubMed  CAS  Google Scholar 

  • Millian SJ, Baldwin JN, Rheins MS (1960) Studies on the incidence of coagulase-positive staphylococci in a normal unconfined population. Am J Pub Health 50:791

    Article  PubMed  CAS  Google Scholar 

  • Mittal R, Chhibber S, Sharma S, Harjai K (2004) Macrophage inflammatory protein-2, neutrophil recruitment and bacterial persistence in an experimental mouse model of urinary tract infection. Microb Infect 6:1326–1332

    Article  CAS  Google Scholar 

  • Naidu AS, Arnold RR (1994) Lactoferrin interaction with salmonellae potentiates antibiotic susceptibility in vitro. Diagn Microbiol Infect Dis 20:69–75

    Article  PubMed  CAS  Google Scholar 

  • Na YJ, Han SB, Kang JS, Yoon YD, Park SK, Kim HM, Yang KH, Joe CO (2004) Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int Immunopharmacol 4:1187–1199

    Article  PubMed  CAS  Google Scholar 

  • Nociari MM, Telford W, Russo C (1999) Postthymic development of CD28-CD8+ T cell subset: age-associated expansion and shift from memory to naive phenotype. J Immunol 162:3327–3335

    PubMed  CAS  Google Scholar 

  • Oliver AM, Weir DM (1990) The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin Exp Immunol 58:3363–3368

    Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. New Engl J Med 347:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341:501–513

    Article  PubMed  CAS  Google Scholar 

  • Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Micriobiol Immunol 306:251–258

    Article  CAS  Google Scholar 

  • Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS 28:1–79

    CAS  Google Scholar 

  • Pedersen SS, Moller H, Espersen F, Sorensen CH, Jensen T, Hoiby N (1992) Mucosal immunity to Pseudomonas aeruginosa alginate in cystic fibrosis. APMIS 100:326–338

    PubMed  CAS  Google Scholar 

  • Pederson KJ, Vallis AJ, Aktories K, Frank DW, Barbieri JT (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–401

    Article  PubMed  CAS  Google Scholar 

  • Perez-Payarols J, Julia Benique MR, Matamoros Flori N, Roman Pinana JM (1994) An increase in gamma-delta T-lymphocytes in the peripheral blood of cystic fibrosis patients. Ann Esp Pediatr 44:35–51

    Google Scholar 

  • Petanceska S, Canoll P, Devi LA (1996) Expression of rat cathepsin S in phagocytic cells. J Biol Chem 271:4403–4409

    Article  PubMed  CAS  Google Scholar 

  • Pietarinen-Runtti P, Lakari E, Raivio KO, Kinnula VL (2000) Expression of antioxidant enzymes in human inflammatory cells. Am J Physiol 278:C118–C125

    CAS  Google Scholar 

  • Power MR, Peng Y, Maydanski E, Marshall JS, Lin TJ (2004) The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 279:49315–49322

    Article  PubMed  CAS  Google Scholar 

  • Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416(6878):291–297

    Article  PubMed  CAS  Google Scholar 

  • Restrepo CS, Lemos DF, Gordillo H, Odero R, Varghese T, Tiemann W, Rivas FF, Moncada R, Gimenez CR (2004) Imaging findings in musculoskeletal complications of AIDS. Radiographics 24:1029–1049

    Article  PubMed  Google Scholar 

  • Risso A, Zanetti M, Gennaro R (1998) Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 189:107–115

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez W (1998) Musculoskeletal manifestations of HIV disease. AIDS Clin Care 10:49–51, 56

    Article  PubMed  CAS  Google Scholar 

  • Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190:1245–1253

    Article  PubMed  CAS  Google Scholar 

  • Roisman FR, Walz DT, Finkelstein AE (1983) Superoxide radical production by human leukocytes exposed to immune complexes: inhibitory action of gold compounds. Inflammation 7:355–362

    Article  PubMed  CAS  Google Scholar 

  • Sadikot RT, Zeng H, Yull FE, Li B, Cheng DS, Kernodle DS, Jansen ED, Contag CH, Segal BH, Holland SM, Blackwell TS, Christman JW (2004) p47phox deficiency impairs NF-kappa B activation and host defense in Pseudomonas pneumonia. J Immunol 172:1801–1808

    PubMed  CAS  Google Scholar 

  • Sadowska B, Bonar A, von Eiff C, Proctor RA, Chmiela M, Rudnicka W, Rozalska B (2002) Characteristics of Staphylococcus aureus, isolated from airways of cystic fibrosis patients, and their small colony variants. FEMS Immunol Med Microbiol 32:193–197

    Article  Google Scholar 

  • Sanderson PJ (1991) Infection in orthopaedic implants. J Hosp Infect 18(Suppl A):367–375

    Article  PubMed  Google Scholar 

  • Santavirta S, Konttinen YT, Saito T, Gronblad M, Partio E, Kemppinen P, Rokkanen P (1990) Immune response to polyglycolic acid implants. J Bone Joint Surg [Br] 72:597–600

    CAS  Google Scholar 

  • Santavirta S, Konttinen YT, Bergroth V, Gronblad M (1991) Lack of immune response to methyl methacrylate in lymphocyte cultures. Acta Orthopaed Scand 62:29–32

    Article  CAS  Google Scholar 

  • Sanyal D, Williams AJ, Johnson AP, George RC (1993) The emergence of vancomycin resistance in renal dialysis. J Hosp Infect 24:167–173

    PubMed  CAS  Google Scholar 

  • Savill J (1997) Apoptosis in resolution of inflammation. Kidney Blood Pressure Res 61:375–380

    CAS  Google Scholar 

  • Schroder JM (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56:32–46

    Article  PubMed  CAS  Google Scholar 

  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169:3883–3891

    PubMed  CAS  Google Scholar 

  • Selan L, Passariello C, Rizzo L, Varesi P, Speziale F, Renzini G, Thaller MC, Fiorani P, Rossolini GM (2002) Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. Lancet 359:2166–2168

    Article  PubMed  Google Scholar 

  • Shapira L, Tepper P, Steinberg D (2000) The interactions of human neutrophils with the constitu- ents of an experimental dental biofilm. J Dental Res 79:1802–1807

    Article  CAS  Google Scholar 

  • Simmons WL, Dybvig K (2007) Biofilms protect Mycoplasma pulmonis cells from lytic effects of complement and gramicidin. Infect Immun 75:3696–3699

    Article  PubMed  CAS  Google Scholar 

  • Simpson JA, Smith SE, Dean RT (1988) Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J Gen Microbiol 134:29–36

    PubMed  CAS  Google Scholar 

  • Singh PK (2004) Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17:267–270

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Parsed MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg PE, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilms development. Nature 417:552–555

    Article  PubMed  CAS  Google Scholar 

  • Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Nat Acad Sci USA 98:6901–6904

    Article  PubMed  CAS  Google Scholar 

  • Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB (2004) Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol 172:3377–3381

    PubMed  CAS  Google Scholar 

  • Smith IM, Vickers AB (1960) Natural history of 338 treated and untreated patients with staphylococcal septicaemia. Lancet 1:1318–1322

    PubMed  CAS  Google Scholar 

  • Smythe MA, Melendy S, Jahns B, Dmuchowski C (1993) An exploratory analysis of medication utilization in a medical intensive care unit. Crit Care Med 21:1319–1323

    Article  PubMed  CAS  Google Scholar 

  • Sourmelis SG, Burke FD, Varian JP (1986) A review of total elbow arthroplasty and an early assessment of the Liverpool elbow prosthesis. J Hand Surg 11:407–413

    CAS  Google Scholar 

  • Speert DP, Loh BA, Cabrai DA, Salit IE (1986) Nonopsonic phagocytosis of nonmucoid Pseudomonas aeruginosa by human neutrophils and monocyte-derived macrophages is correlated with bacterial piliation and hydrophobicity. Infect Immun 53:207–212

    PubMed  CAS  Google Scholar 

  • Steinbach LS, Tehranzadeh J, Fleckenstein JL, Vanarthos WJ, Pais MJ (1993) Human immunodeficiency virus infection: musculoskeletal manifestations. Radiology 186:833–838

    PubMed  CAS  Google Scholar 

  • Steinberg D, Poran S, Shapira L (1999) The effect of extracellular polysaccharides from Streptococcus mutans on the bactericidal activity of human neutrophils. Arch Oral Biol 44:437–444

    Article  PubMed  CAS  Google Scholar 

  • Stiver HG, Zachidniak K, Speert DP (1988) Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudomonas aeruginosa. Clin Investig Med 11:247–252

    CAS  Google Scholar 

  • Suter S, Schaad UB, Roux L, Nydegger UE, Waldvogel FA (1984) Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis 149:523–531

    PubMed  CAS  Google Scholar 

  • Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB Jr, O’Neill S, McElvaney NG (2003) Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol 171:931–937

    PubMed  CAS  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  • Talpada M, Rauf SJ, Walling DM (2002) Primary Nocardia osteomyelitis as a presentation of AIDS. AIDS Read 12:75–78

    PubMed  Google Scholar 

  • Tanigawa T, Kotake Y, Tanigawa M, Reinke LA (1995) Mutual contact of adherent polymorpho-nuclear leukocytes inhibits their generation of Superoxide. Free Rad Res 22:361–373

    Article  CAS  Google Scholar 

  • Tate S, MacGregor G, Davis M, Innes JA, Greening AP (2002) Airways in cystic fibrosis are acidified: detection by exhaled breath condensate. Thorax 57:926–929

    Article  PubMed  CAS  Google Scholar 

  • Tauber AI, Borregaard N, Simons E, Wright J (1983) Chronic granulomatous disease: a syndrome of phagocyte oxidase deficiencies. Medicine 62:286–309

    Article  PubMed  CAS  Google Scholar 

  • Tehranzadeh J, O’Malley P, Rafii M (1996) The spectrum of osteoarticular and soft tissue changes in patients with human immunodeficiency virus (HIV) infection. Crit Rev Diagn Imag 37:305–347

    CAS  Google Scholar 

  • Tehranzadeh J, Ter-Oganesyan RR, Steinbach LS (2004) Musculoskeletal disorders associated with HIV infection and AIDS. Part I: infectious musculoskeletal conditions. Skeletal Radiol 33:249–259

    Article  PubMed  Google Scholar 

  • Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171:6690–6696

    PubMed  CAS  Google Scholar 

  • Tuazon CU, Sheagren JN (1974) Increased rate of carriage of Staphylococcus aureus among narcotic addicts. J Infect Dis 129:725–727

    PubMed  CAS  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    PubMed  CAS  Google Scholar 

  • Usher LR, Lawson RA, Geary I, Taylor CJ, Bingle CD, Taylor GW, Whyte MK (2002) Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168:1861–1868

    PubMed  CAS  Google Scholar 

  • Valenti P, Greco R, Pitari G, Rossi P, Ajello M, Melino G, Antonini G (1999) Apoptosis of Caco-2 intestinal cells invaded by Listeria monocytogenes: protective effect of lactoferrin. Exp Cell Res 250:197–202

    Article  PubMed  CAS  Google Scholar 

  • van Oss CJ (1978) Phagocytosis as a surface phenomenon. Ann Rev Microbiol 32:19–39

    Article  Google Scholar 

  • Vassilopoulos D, Chalasani P, Jurado RL, Workowski K, Agudelo CA (1997) Musculoskeletal infections in patients with human immunodeficiency virus infection. Medicine (Baltimore) 76:284–294

    Article  CAS  Google Scholar 

  • von Gotz F, Haussler S, Jordan D, Saravanamuthu SS, Wehmhoner D, Strussmann A, Lauber J, Attree I, Buer J, Tummler B, Steinmetz I (2004) Expression analysis of a highly adherent and cytotoxic small colony variant of Pseudomonas aeruginosa isolated from a lung of a patient with cystic fibrosis. J Bacteriol 186:3837–3847

    Article  CAS  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  PubMed  CAS  Google Scholar 

  • Wagner C, Kondella K, Bernschneider T, Heppert V, Wentzensen A, Hansch GM (2003) Post-traumatic osteomyelitis: analysis of inflammatory cells recruited into the site of infection. Shock 20:503–510

    Article  PubMed  Google Scholar 

  • Wagner C, Kaksa A, Muller W, Denefleh B, Heppert V, Wentzensen A, Hansch GM (2004) Polymorphonuclear neutrophils in posttraumatic osteomyelitis: cells recovered from the inflamed site lack chemotactic activity but generate Superoxides. Shock 22:108–115

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1997) Prosthetic metals impair murine immune response and cytokine release in vivo and in vitro. J Orthop Res 15:688–699

    Article  PubMed  CAS  Google Scholar 

  • Ward PA, Lentsch AB (1999) The acute inflammatory response and its regulation. Arch Surg 134:666–669

    Article  PubMed  CAS  Google Scholar 

  • White CJ, Gallin JI (1986) Phagocyte defects. Clin Immunol Immunopath 40:50–61

    Article  CAS  Google Scholar 

  • Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Investig Dermatol 120:810–816

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Skerlavaj B, Tomasinsig L, Circo R (2002) Cathelicidin peptides as candidates for a novel class of antimicrobials. Curr Pharma Design 8:779–793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Leid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nymer, M., Cope, E., Brady, R., Shirtliff, M.E., Leid, J.G. (2008). Immune Responses to Indwelling Medical Devices. In: Shirtliff, M., Leid, J.G. (eds) The Role of Biofilms in Device-Related Infections. Springer Series on Biofilms, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68119-9_10

Download citation

Publish with us

Policies and ethics