Skip to main content

How Plants Identify the Season by Using a Circadian Clock

  • Chapter
Rhythms in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M (1999) Seeing the world in red and blue: insight into plant vision and photoreceptors. Curr Opin Plant Biol 2:230–235.

    Article  PubMed  CAS  Google Scholar 

  • Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Màs P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883.

    Article  PubMed  CAS  Google Scholar 

  • Aukerman M, Amasino R (1996) Molecular genetic analysis of flowering time in Arabidopsis. Semin Cell Dev Biol 7:427–433.

    Article  CAS  Google Scholar 

  • Balzer I, Hardeland R (1991) Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 253:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Blaney LT, Hamner KC (1957) Interrelations among effects of temperature, photoperiod, and dark period on floral initiation of Biloxi soybeans. Bot Gaz 119:10–24.

    Article  Google Scholar 

  • Bollig I, Chandrashekaran M, Engelmann W, Johnsson A (1976) Photoperiodism in Chenopodium rubrum. An explicit version of the Bünning hypothesis. Int J Chronobiol 4:83–96.

    Google Scholar 

  • Brenner W, Engelmann W (1973) Heavy water slows down the photoperiodic timing of flower induction in Chenopodium rubrum. Z Naturforsch 28c:356.

    CAS  Google Scholar 

  • Bünning E (1936) Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Deutsch Bot Ges 54:590–607.

    Google Scholar 

  • Bünning E (1951) Erbliche Jahresrhythmen bei Pflanzen. Umschau 51:268–270.

    Google Scholar 

  • Bünning E (1954) Der Verlauf der endogenen Tagesrhythmik bei photoperiodischen Störlicht-Versuchen mit Soja. Physiol Plantarum 7:538–547.

    Article  Google Scholar 

  • Bünning E (1960) Circadian rhythms and the time measurement in photoperiodism. Cold Spring Habor Symp Quant Biol 25:249–256.

    Google Scholar 

  • Bünning E (1969a) Common features of photoperiodism in plants and animals. Photochem Photobiol 9:219–228.

    Article  PubMed  Google Scholar 

  • Bünning E (1969b) Die Bedeutung tagesperiodischer Blattbewegungen für die Präzision der Tageslängenmessung. Planta 86:209–217.

    Article  Google Scholar 

  • Bünning E (1979) Circadian rhythms, light, and photoperiodism: a re-evaluation. Bot Mag Tokyo 92:89–103.

    Article  Google Scholar 

  • Bünning E, Moser I (1966) Unterschiedliche photoperiodische Empfindlichkeit der beiden Blattseiten von Kalanchoe blossfeldiana. Planta 69:296–298.

    Article  Google Scholar 

  • Bünning E, Moser I (1969) Einfluss der Blattlage auf die Blütenbildung. Naturwissenschaften 56:519.

    Article  Google Scholar 

  • Chailakhyan M (1936) On the hormonal theory of plant development. C R Dokl Acad Sci URSS 3:442.

    Google Scholar 

  • Cremer F, Coupland G (2003) Distinct photoperiodic responses are conferred by the same genetic pathway in Arabidopsis and in rice. Trends Plant Sci 8:405–407.

    Article  PubMed  CAS  Google Scholar 

  • Daan S, Albrecht U, van der Horst GTJ, Illnerova H, Roenneberg T, Wehr TA, Schwartz WJ (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms 16:105–116.

    Article  PubMed  CAS  Google Scholar 

  • Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101:3292–3297.

    Article  PubMed  CAS  Google Scholar 

  • Denffer D von (1941) Über die photoperiodische Beinflussbarkeit von Habitus und Sukkulenz bei einigen Crassulaceen-Arten. Jahrb wiss Bot 89:542–573.

    Google Scholar 

  • Devlin PF, Kay SA (2000) Devlin PF Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12:2499–2510.

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Kay SA (2001) Circadian photoperception. Annu Rev Physiol 63:677–694.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann W (1960) Endogene Rhythmik und photoperiodische Blühinduktion bei Kalanchoe. Planta 55:496–511.

    Article  Google Scholar 

  • Engelmann W, Bollig I, Hartmann R (1976) Wirkung von Lithium-Ionen auf zirkadiane Rhythmen. Arzneimittel-Forsch 25:1085–1086.

    Google Scholar 

  • Evans LT (1969a) The nature of flower induction. In: Evans LT (ed) The induction of flowering: some case histories, chap. 22. Cornell University Press, Ithaca, NY, pp 457–480.

    Google Scholar 

  • Evans LT (1969b) A short case history of the physiology of flowering. In: Evans LT (ed) The induction of flowering: some case histories, chap. 1. Cornell University Press, Ithaca, NY, pp 1–13.

    Google Scholar 

  • Ewing E, Struik P (1998) Tuber formation in potato: Induction, initiation and growth. Hort Rev 14:89–197.

    Google Scholar 

  • Fankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Garner W (1948) Vernalization and photoperiodism. Chronica Botanica, Waltham, MA.

    Google Scholar 

  • Garner W, Allard H (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606.

    Google Scholar 

  • Gilmour S, Zeevart J, Schwenen L, Graebe J (1986) Gibberellin metabolism in cell-free extracts from spinach leaves in relation to photoperiod. Plant Physiol 82:190–195.

    Article  PubMed  CAS  Google Scholar 

  • Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187.

    Article  PubMed  CAS  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867.

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Yang H, Mockler T, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt G (1905) Die Lichtsinnesorgane der Blätter. Engelmann, Leipzig.

    Google Scholar 

  • Hackbarth I (1935) Versuche über Photoperiodismus bei südamerikanischen Kartoffelklonen. Züchter 7:95.

    Google Scholar 

  • Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung SB, Halliday KJ, Amasino RM, Millar AJ (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15:2719–2729.

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ, Whitelam GC (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for PHYD and PHYE. Plant Physiol 131:1913–1920.

    Article  PubMed  CAS  Google Scholar 

  • Harder R (1948) Vegetative and reproductive development of Kalanchoe blossfeldiana as influenced by photoperiodism. Symp Soc Exp Biol 2:117–138.

    Google Scholar 

  • Harder R, Gall E (1945) Über die Trennung der Blühhormon-und Metaplasinwirkung bei Kalanchoe blossfeldiana durch Narkose. Nachr Akad Wiss Göttingen Math Phys Kl 45:54–59.

    Google Scholar 

  • Harder R, Witsch H (1940) Über den Einfluss der Tageslänge auf den Habitus, besonders die Blattsukkulenz, und den Wasserhaushalt von Kalanchoe blossfeldiana. Jahrb wiss Bot 89:354–411.

    Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113.

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684.

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1096.

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120.

    Article  PubMed  CAS  Google Scholar 

  • Jackson S, Thomas B (1998) The photoperiodic control of tuberization in potato. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. Environmental Plant Biology, BIOS, Washington, DC, pp 183–193.

    Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and PHYB. Nature 410:487–490.

    Article  PubMed  CAS  Google Scholar 

  • Johnsson A, Karlsson H (1972) A feedback model for biological rhythms. I. Mathematical description and basic properties of the model. J Theor Biol 36:153–174.

    Article  PubMed  CAS  Google Scholar 

  • Knott JE (1934) Effect of localized photoperiod on spinach. Proc Am Soc Hort Sci 31:152–154.

    Google Scholar 

  • Koda Y, Omer E, Yoshihara T, Shibata H, Sakamura S, Okazawa Y (1988) Isolation of a specific potato tuber-inducing substance from potato leaves. Plant Cell Physiol 29:1047–1051.

    CAS  Google Scholar 

  • Lakin-Thomas PL (2006) Transcriptional feedback oscillators: maybe, maybe not. J Biol Rhythms 21:83–92.

    Article  PubMed  CAS  Google Scholar 

  • Lang A, Melchers G (1948) Auslösung der Blütenbildung bei Langtagpflanzen unter Kurztagbedingungen durch Aufpfropfung von Kurztagpflanzen. Z Naturforsch 3b:108–111.

    Google Scholar 

  • Locke JCW, Millar AJ, Turner MS (2005) Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol 234:383–393.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden PJ, Millar AJ (1998) Biological rhythms and photoperiodism in plants. BIOS, Washington, DC.

    Google Scholar 

  • Lüning K (1980) Control of algal life history by daylength and temperature. In: Price J, Irvine D, Farnham W (eds) The shore environment: Methods and ecosystems, vol 2. Ecosystems. Academic Press, London, pp 915–945.

    Google Scholar 

  • Màs P (2005) Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int J Dev Biol 49:491–500.

    Article  PubMed  Google Scholar 

  • Màs P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of PHYTOCHROME A and CRYPTOCHROME 2. Nature 408:207–211.

    Article  PubMed  Google Scholar 

  • Màs P, Kim WJ, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis. Nature 426:567–570.

    Article  PubMed  Google Scholar 

  • Mayer W, Moser I, Bünning E (1973) Die Epidermis als Ort der Lichtperzeption für circadiane Laubblattbewegungen und photoperiodischer Induktionen. Z Pflanzenphysiol 70:66–73.

    Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803.

    Article  PubMed  CAS  Google Scholar 

  • Melchers G (1956) Die Beteiligung der endonomen Tagesrhythmik am Zustandekommen der photoperiodischen Reaktion der Kurztagpflanze Kalanchoe blossfeldiana. Z Naturforsch 11b:544–548.

    Google Scholar 

  • Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Exker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variations in the circadian clock. Science 302:1049–1053.

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277–283.

    Article  PubMed  CAS  Google Scholar 

  • Moshkov B (1936) Role of leaves in photoperiodic reaction of plants. Bull Appl Bot Gen Plant Breed A17:25.

    Google Scholar 

  • Nagy F, Schäfer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol 53:329–355.

    Article  PubMed  CAS  Google Scholar 

  • Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593.

    Article  PubMed  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857.

    Article  PubMed  CAS  Google Scholar 

  • Rand DA, Shulgin BV, Salazar D, Millar AJ (2004) Design principles underlying circadian clocks. J R Soc Lond Interface 1:119–130.

    Article  CAS  Google Scholar 

  • Razumov V (1931) On the localization of photoperiodical stimulation. Bull Appl Bot Gen Plant Breed 27:249.

    Google Scholar 

  • Roden LC, Song HR, Jackson S, Morris K, Carre IA (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc Natl Acad Sci USA 99:13313–13318.

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Hastings J (1988) Two photoreceptors influence the circadian clock of a unicellular alga. Naturwissenschaften 75:206–207.

    Article  PubMed  CAS  Google Scholar 

  • Sachs J (1880) Arb Bot Inst Würzburg 3:452–488.

    Google Scholar 

  • Salome PA, McClung CR (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ 28:21–38.

    Article  CAS  Google Scholar 

  • Schwabe WW (1968) Studies on the role of the leaf epiderm in photoperiodic perception in Kalanchoe blossfeldiana. J Exp Bot 19:108–113.

    Article  Google Scholar 

  • Seidman G, Riggan WB (1986) Stomatal movements: a yearly rhythm. Nature 217:684–685.

    Article  Google Scholar 

  • Spruyt E, De Greef J (1987) Endogenous rhythmicity in water uptake by seeds. Ann Bot Lond 60:171–176.

    Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120.

    Article  PubMed  CAS  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, San Diego.

    Google Scholar 

  • Tizio R (1971) Action et rôle probable de certaines gibberellines (A1, A3, A4, A5, A9, et A13) sur la croissance des stolones et la tuberalization de la pomme de terre (Solanum tuberosum L.). Potato Res 14:193–204.

    Article  CAS  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006.

    Article  PubMed  CAS  Google Scholar 

  • Viczian A, Kircher S, Fejes E, Millar AJ, Schäfer E, Kozma-Bognar L, Nagy F (2005) Functional characterization of phytochrome interacting factor 3 for the Arabidopsis thaliana circadian clockwork. Plant Cell Physiol 46:1591–1602.

    Article  PubMed  CAS  Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in plants. McGraw-Hill, London.

    Google Scholar 

  • Wallrabe E (1942) Über die Wirkung von Licht verschiedener Wellenlänge auf die Blütenbildung und die Sukkulenz der Blätter bei der Kurztagspflanze Kalanchoe blossfeldiana. Bot Arch 45:281–316.

    Google Scholar 

  • Weller J, Reid J, Taylor S, Murfet I (1997) The genetic control of flowering in pea. Trends Plant Sci 2:412–418.

    Article  Google Scholar 

  • Wellmer F, Riechmann JL (2005) Gene network analysis in plant development by genomic technologies. Int J Dev Biol 49:745–759.

    Article  PubMed  CAS  Google Scholar 

  • Went F (1959) The periodic aspect of photoperiodism and thermoperiodicity. In: Withrow R (ed) Photoperiodism and related phenomena in plants and animals. American Association for the Advancement of Science, Washington, DC, pp 551–564.

    Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059.

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen Mea (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846.

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2003) Living by the calendar: how plants know when to flower. Nature Rev Mol Biol 4:265–275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelmann, W. (2007). How Plants Identify the Season by Using a Circadian Clock. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_9

Download citation

Publish with us

Policies and ethics