Skip to main content

Noise-Induced Phenomena and Complex Rhythms: Theoretical Considerations, Modelling and Experimental

  • Chapter
Rhythms in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anishchenko V, Moss F, Neiman A, Schimansky-Geier L (1999) Stochastic resonance: noise induced order. Sov Phys Usp 42(1):7–36

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–371

    Article  PubMed  Google Scholar 

  • Barrs HD (1971) Cyclic variations in stomatal aperture, transpiration and leaf water potential under constant environmental conditions. Annu Rev Plant Physiol 22:223–236

    Article  Google Scholar 

  • Beck F, Blasius B, Lüttge U, Neff R, Rascher U (2001) Stochastic noise interferes coherently with a model biological clock and produces specific dynamic behaviour. Proc R Soc Lond B 268:1307–1313

    Article  CAS  Google Scholar 

  • Berridge MJ, Rapp PE (1979) A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 81:217–279

    PubMed  CAS  Google Scholar 

  • Beyschlag W, Eckstein J (1997) Stomatal patchiness. Progr Bot 59:283–298

    Google Scholar 

  • Bezrukov SM, Vodyanoy I (1995) Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378:362–364

    Article  PubMed  CAS  Google Scholar 

  • Blasius B, Beck F, Lüttge U (1997) A model for photosynthetic oscillations in crassulacean acid metabolism (CAM). J Theor Biol 184:345–351

    Article  CAS  Google Scholar 

  • Blasius B, Beck F, Lüttge U (1998) Oscillatory model of crassulacean acid metabolism: structural analysis and stability boundaries with a discrete hysteresis switch. Plant Cell Environ 21:775–784

    Article  CAS  Google Scholar 

  • Blasius B, Neff R, Beck F, Lüttge U (1999) Oscillatory model of crassulacean acid metabolism with a dynamic hysteresis switch. Proc R Soc Lond B 266:93–101

    Article  CAS  Google Scholar 

  • Bohn A, Hinderlich S, Hütt M-T, Kaiser F, Lüttge U (2003) Identification of rhythmic subsystems in the circadian cycle of Crassulacean acid metabolism under thermoperiodic perturbations. Biol Chem 384:721–728

    Article  PubMed  CAS  Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolic control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism. Plant Physiol 121:889–896

    Article  PubMed  CAS  Google Scholar 

  • Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310:449–451

    Article  PubMed  CAS  Google Scholar 

  • Boxall SF, Foster JM, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2005) Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol 137:969–982

    Article  PubMed  CAS  Google Scholar 

  • Busch H, Hütt M-Th, Kaiser F (2001) The effect of colored noise on networks of nonlinear oscillators. Phys Rev E 64:021105

    Article  CAS  Google Scholar 

  • Cardon ZG, Mott KA, Berry JA (1994) Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated using gas-exchange techniques. Plant Cell Environ 17:995–1007

    Article  Google Scholar 

  • Cowan IR (1972a) Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. Planta 106:185–219

    Article  Google Scholar 

  • Cowan IR (1972b) An electrical analogue of evaporation from, and flow of water in plants. Planta 106:221–226

    Article  Google Scholar 

  • Crutchfield JP, Mitchell M (1995) The evolution of emergent computation. PNAS 92:10742–10746

    Article  PubMed  CAS  Google Scholar 

  • De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Douglass JK, Wilkins L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365:337–340

    Article  PubMed  CAS  Google Scholar 

  • Duarte HM, Jakovljevic I, Kaiser F, Lüttge U (2005) Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perrier. Planta 220:809–816

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC (1993) Genetic analysis of circadian clocks. Annu Rev Physiol 55:683–728

    Article  PubMed  CAS  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Modern Phys 70:223–287

    Article  CAS  Google Scholar 

  • Giersch C (1994) Photosynthetic oscillations: observations and models. Comments Theor Biol 3:339–364

    Google Scholar 

  • Gierer A (1998) Im Spiegel der Natur erkennen wir uns selbst. Wissenschaft und Menschenbild, Rowohlt, Reinbek bei Hamburg

    Google Scholar 

  • Giersch C, Sivak MN, Walker DA (1991) A mathematical skeleton model of photosynthetic oscillations. Proc R Soc Lond B 245:77–83

    Article  CAS  Google Scholar 

  • Haefner JW, Buckley TN, Mott KA (1997) A spatially explicit model of patchy stomatal responses to humidity. Plant Cell Environ 20:1087–1097

    Article  Google Scholar 

  • Hartwell J (2005) The circadian clock in CAM plants. In: Hall AJW, McWatters HG (eds) Endogenous plant rhythms. Blackwell, Oxford, pp 211–236

    Google Scholar 

  • Hütt M-Th, Dehnert M (2006) Methoden der Bioinformatik. Eine Einführung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hütt M-Th, Lüttge U (2002) Nonlinear dynamics as a tool for modeling in plant physiology. Plant Biol 4:281–297

    Article  Google Scholar 

  • Hütt M-Th, Lüttge U (2005a) The interplay of synchronization and fluctuations reveals connectivity levels in networks of nonlinear oscillators. Physica A 350:207–226

    Article  Google Scholar 

  • Hütt M-Th, Lüttge U (2005b) Network dynamics in plant biology: current progress in historical perspective. Progr Bot 66:277–310

    Article  Google Scholar 

  • Hütt M-Th, Neff R (2001) Quantification of spatio-temporal phenomena by means of cellular automata techniques. Physica A 289:498–516

    Article  Google Scholar 

  • Kaiser H, Kappen L (2001) Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism. J Exp Bot 52:1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Kliemchen A, Schomburg M, Galla H-J, Lüttge U, Kluge M (1993) Phenotypic changes in the fluidity of the tonoplast membrane of crassulacean-acid metabolism plants in response to temperature and salinity stress. Planta 189:403–409

    Article  CAS  Google Scholar 

  • Kluge M, Kliemchen A, Galla H-J (1991) Temperature effects on crassulacean acid metabolism: EPR spectroscopic studies on the thermotropic phase behaviour of the tonoplast membrane of Kalanchoë daigremontiana. Bot Acta 104:355–360

    CAS  Google Scholar 

  • Kohl P, Noble D, Winslow RL, Hunter PJ (2000) Computational modelling of biological systems: tools and visions. Philos Trans R Soc A 358:579–610

    Article  CAS  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lee S-G, Neiman A, Kim S (1998) Coherence resonance in a Hodgkin-Huxley neuron. Phys Rev E 57:3292–3297

    Article  CAS  Google Scholar 

  • Liu Y, Tsinoremans NF, Johnson CH, Lebedeca NV, Golden SS, Ishiura M, Kondo TI (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9:1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Longtin A, Bulsara A, Moss F (1991) Time interval sequences in bistable systems and the noise induced transmission of information by sensory neurons. Phys Rev Lett 67:656–660

    Article  PubMed  Google Scholar 

  • Lüttge U (2000) The tonoplast functioning as a master switch for circadian regulation of crassulacean acid metabolism. Planta 211:761–769

    Article  PubMed  Google Scholar 

  • Lüttge U (2003a) Circadian rhythmicity: Is the biological clock hardware or software? Progr Bot 64:277–319

    Google Scholar 

  • Lüttge U (2003b) Circadian rhythms. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of Applied Plant Sciences. Elsevier/Academic Press, Amsterdam, pp 1084–1096

    Google Scholar 

  • Lüttge U, Beck F (1992) Endogenous rhythms and chaos in crassulacean acid metabolism. Planta 188:28–38

    Article  Google Scholar 

  • Lüttge U, Hütt M-Th (2004) High frequency or ultradian rhythms in plants. Progr Bot 65:235–263

    Google Scholar 

  • Lüttge U, Hütt M-Th (2006) Spatiotemporal patterns and distributed computation – A formal link between CO2 signalling, diffusion and stomatal regulation. Progr Bot 68 (in press)

    Google Scholar 

  • Magnani F, Leonardi S, Tognetti R, Grace J, Borghetti M (1998) Modelling the surface conductance of a broad-leaf canopy: effects of partial decoupling from the atmosphere. Plant Cell Environ 21:867–879

    Article  Google Scholar 

  • McAinsh MR, Webb AAR, Taylor JE, Hetherington AM (1995) Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell 7:1207–1219

    Article  PubMed  CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1997) Calcium ions as second messengers in guard cell signal transduction. Physiol Plant 100:16–29

    Article  CAS  Google Scholar 

  • Medlyn BE, Badeck F-W, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomäki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jstbid PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495

    Article  CAS  Google Scholar 

  • Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol 132:629–639

    Article  PubMed  CAS  Google Scholar 

  • Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Physica D 75:361–391

    Article  Google Scholar 

  • Moss F (2000) Stochastic resonance: looking forward. In: Walleczek J (ed) Self-organized biological dynamics and nonlinear control. Cambridge University Press, Cambridge, pp 236–256

    Google Scholar 

  • Moss F, Pierson D, O'Gorman D (1994) Stochastic resonance: tutorial and update. Int J Bifurc Chaos 4:1383–1397

    Article  Google Scholar 

  • Mulquiney PJ, Kuchel PW (1999) Model of 2, 3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement. Biochem J 342:581–596

    Article  PubMed  CAS  Google Scholar 

  • Neff R, Blasius B, Beck F, Lüttge U (1998) Thermodynamics and energetics of the tonoplast membrane operating as a hysteresis switch in an oscillatory model of crassulacean acid metabolism. J Membr Biol 165:37–43

    Article  PubMed  CAS  Google Scholar 

  • Neger FW (1918) Die Wegsamkeit der Laubblätter für Gase. Flora 111:152–161

    Google Scholar 

  • Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ 20:845–866

    Article  Google Scholar 

  • Niinemets Ü, Tenhunen JD, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335

    Article  CAS  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80

    Article  PubMed  CAS  Google Scholar 

  • Olsen LF, Degn H (1985) Chaos in biological systems. Q Rev Biophys 18:165–225

    Article  PubMed  CAS  Google Scholar 

  • Peak D, West JD, Messinger SM, Mott KA (2004) Evidence for complex, collective dynamics and emergent, distributed computation in plants. PNAS 101:918–922

    Article  PubMed  CAS  Google Scholar 

  • Pearcy RW, Gross LJ, He D (1997) An improved dynamic model of photosynthesis for estimation of carbon gain in sunfleck light regimes. Plant Cell Environ 20:411–424

    Article  Google Scholar 

  • Pikovsky AS, Kurths J (1997) Coherence resonance in a noise driven excitable system. Phys Rev Lett 78:775–778

    Article  CAS  Google Scholar 

  • Poolman MG, Fell DA, Thomas S (2000) Modelling photosynthesis and its control. J Exp Bot 51:319–328

    Article  PubMed  CAS  Google Scholar 

  • Raikhel NV, Coruzzi GM (2003) Plant systems biology. Plant Physiol 132:403

    Article  Google Scholar 

  • Rapp PE (1986) Oscillations and chaos in cellular metabolism and physiological systems. In: Holden A (ed) Chaos. Manchester University Press, Manchester, pp 179–208

    Google Scholar 

  • Rascher U, Lüttge U (2002) High-resolution chlorophyll fluorescence imaging serves as a non-invasive indicator to monitor the spatio-temporal variations of metabolism during the day-night cycle and during the endogenous rhythm in continuous light in the CAM plant Kalanchoe daigremontiana. Plant Biol 4:671–681

    Article  CAS  Google Scholar 

  • Rascher U, Hütt M-T, Siebke K, Osmond B, Beck F, Lüttge U (2001) Spatio-temporal variation of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators. Proc Natl Acad Sci USA 98:11801–11805

    Article  PubMed  CAS  Google Scholar 

  • Raschke K (1965) Die Stomata als Glieder eines schwingungsfähigen CO2-Regelsystems. Experimenteller Nachweis an Zea mays L. Z Naturf 20b:1261–1270

    Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340

    Article  CAS  Google Scholar 

  • Roelfsema MRG, Hedrich R (2002) Studying guard cells in the intact plant: modulation of stomatal movement by apoplastic factors. New Phytol 153:425–431

    CAS  Google Scholar 

  • Running SW (1990) Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Ecological Studies vol 79. Springer, Berlin Heidelberg New York, pp 65–86

    Google Scholar 

  • Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ 29:340–352

    Article  PubMed  CAS  Google Scholar 

  • Siebke K, Weis E (1995a) Assimilation images of leaves of Glechoma hederacea: analysis of non-synchronous stomata related oscillations. Planta 196:155–165

    Article  CAS  Google Scholar 

  • Siebke K, Weis E (1995b) Imaging of chlorophyll-a-fluorescence in leaves: topography of photosynthesis oscillations in leaves of Glechoma hederacea. Photosynth Res 45:225–237

    Article  CAS  Google Scholar 

  • Solé RV, Manrubia SC, Luque B, Delgado J, Bascompte J (1996) Phase transitions and complex systems. Complexity 2:13–29

    Article  Google Scholar 

  • Strogatz S (2004) Sync: the emerging science of spontaneous order. Hyperion, New York

    Google Scholar 

  • Sweetlove LJ, Last RL, Fernia AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132:420–425

    Article  PubMed  CAS  Google Scholar 

  • Taylor DK, Rank DR, Keiser DR, Smith BN, Criddle RS, Hansen LD (1998) Modelling temperature effects on growth-respiration relations of maize. Plant Cell Environ 21:1143–1151

    Article  Google Scholar 

  • Teoh CT, Palmer JH (1971) Nonsynchronized oscillations in stomatal resistance among sclerophylls of Eucalyptus umbra. Plant Physiol 47:409–411

    Article  PubMed  Google Scholar 

  • Terashima I (1992) Anatomy of non-uniform leaf photosynthesis. Photosynth Res 31:195–212

    Article  CAS  Google Scholar 

  • Walcroft AS, Whitehead D, Silvester WB, Kelliher FM (1997) The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant Cell Environ 20:1338–1348

    Article  CAS  Google Scholar 

  • Walker DA (1992) Concerning oscillations. Photosynth Res 34:387–395

    Article  CAS  Google Scholar 

  • West JD, Peak D, Peterson JQ, Mott KA (2005) Dynamics of stomatal patchiness for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images. Plant Cell Environ 28:633–641

    Article  Google Scholar 

  • Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MGP (1998) Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant Cell Environ 21:953–968

    Article  Google Scholar 

  • Willmer CM (1988) Stomatal sensing of the environment. Biol J Linn Soc 34:205–217

    Article  Google Scholar 

  • Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15

    Article  PubMed  CAS  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media Publishing, Champaign, IL

    Google Scholar 

  • Woodward FJ (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Wyka TP, Lüttge UE (2003) Contribution of C3 carboxylation to the circadian rhythm of carbon dioxide uptake in a Crassulacean acid metabolism plant Kalanchoë daigremontiana. J Exp Bot 54:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Wyka TP, Bohn A, Duarte HM, Kaiser F, Lüttge UE (2004) Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë dairemontiana: testing the tonoplast-as-oscillator model. Planta 219:705–713

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hütt, MT., Lüttge, U. (2007). Noise-Induced Phenomena and Complex Rhythms: Theoretical Considerations, Modelling and Experimental. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_15

Download citation

Publish with us

Policies and ethics