Skip to main content

Rhythms, Clocks and Deterministic Chaos in Unicellular Organisms

  • Chapter
Rhythms in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams CA, Kuriyama H, Lloyd D, Murray DB (2003) The GTS1 protein stabilizes the autonomous oscillator in yeast. Yeast 20:463–470.

    PubMed  CAS  Google Scholar 

  • Anserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena during sleep. Science 118:273–274.

    Google Scholar 

  • Aon MA, Cortassa S (1997) Dynamic biological organization: fundamentals as applied to living systems. Chapman and Hall, London.

    Google Scholar 

  • Aon MA, Cortassa S, Lloyd D (2000) Chaotic dynamics and fractal space in biochemistry: simplicity underlies complexity. Cell Biol Int 24:581–587.

    PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S, Lemur KM, Hayes AJ, Lloyd D (2007) Single and case population oscillations in yeast. A 2-photon scanning laser microscopy study: FEBS Lett 581:8–14.

    PubMed  CAS  Google Scholar 

  • Auberson LCM, Kanbier T, von Stockar (1993) Monitoring yeast cultures by calorimetry. J Biotechnol 29:205–215.

    CAS  Google Scholar 

  • Baek SJ, Ott E (2004) Onset of synchronization in systems of globally coupled chaotic maps. Phys Rev E Stat Nonlin Matter 69:066210.

    Google Scholar 

  • Barrio RS, Zhang L, Maini PK (1997) Hierarchically coupled ultradian oscillations generating robust circadian rhythms. Bull Math Biol 59:517–532.

    PubMed  CAS  Google Scholar 

  • Battogtokh D, Tyson JJ (2004a) Bifurcation analysis of a model of the budding yeast cell cycle. Chaos 14:653–661.

    PubMed  CAS  Google Scholar 

  • Battogtokh D, Tyson JJ (2004b) Turbulence near cyclic fold bifurcations in biorhythmic media. Phys Rev E Stat Nonlin Soft Matter Phys 70:026212.

    PubMed  Google Scholar 

  • Battogtokh D, Tyson JJ (2006) Periodic forcing of a mathematical model of the eukaryotic cell cycle. Phys Rev E 73:011910.

    Google Scholar 

  • Battogtokh D, Asch DK, Case ME, Arnold J, Schuttler HB (2002) An ensemble method for identifying regulatory circuits with special reference to the cluster of Neurospora crassa. Proc Natl Acad Sci USA 99:16909–9.

    Google Scholar 

  • Bertalanffy L von (1952) Problems of life. Harper, New York.

    Google Scholar 

  • Bertalanffy L von (1968) General systems theory. George Braziller, New York.

    Google Scholar 

  • Beuse M, Kopman K, Dickmann H, Thoma M (1999) Oxygen, pH value and carbon source changes the mode of oscillation in synchronous cultures of yeast (Saccharomyces cerevisiae). Biotechnol Bioeng 63:410–417.

    PubMed  CAS  Google Scholar 

  • Boyd CAR, Noble D (1993) The logic of life: the challenge of integrative physiology. Oxford University Press, Oxford.

    Google Scholar 

  • Brenner S (1999) Theoretical biology in the third millennium. Philos Trans R Soc Lond B 354:1963–1965.

    CAS  Google Scholar 

  • Brodsky VY (1975) Protein synthesis rhythm. J Theor Biol 55:167–200.

    Google Scholar 

  • Brodsky VY (2006) Direct cell-cell communication. A new approach due to recent data on the nature and self organization of ultradian circahoralian intracellular rhythms. Biol Rev 81:143–162.

    PubMed  Google Scholar 

  • Brooks RF (1985) The transition probability model: successes, limitations, and deficiencies. In: Rensing L, Jaeger NI (eds) Temporal order. Springer, Berlin Heidelberg New York, pp 304–314.

    Google Scholar 

  • Bünning E (1964) The physiological clock. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Carlisle M (1980) From prokaryote to eukaryote: gains and losses. In: Gooday GW, Lloyd D, Trinci APJ (eds) The eukaryotic microbial cell. Cambridge University Press, Cambridge, pp 1–40.

    Google Scholar 

  • Carré IA, Edmunds LN Jr (1993) Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci 104:1163–1173.

    PubMed  Google Scholar 

  • Chance B, Estabrook RW, Ghosh AK (1964) Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in cells. Proc Natl Acad Sci USA 51:1244–1251.

    PubMed  CAS  Google Scholar 

  • Chance B, Pye EK, Ghosh AK, Hess B (eds) (1973) Biological and biochemical oscillations. Academic Press, New York.

    Google Scholar 

  • Chandrashekaran MK (2005) Time in the living world. Universities Press (India), Hyderabad.

    Google Scholar 

  • Chen C-I, McDonald KA (1990) Oscillatory behaviour of yeast in continuous culture. Biotechnol Bioeng 36:28–38.

    PubMed  CAS  Google Scholar 

  • Chernavskii DS, Palamarchuk EK, Polexhaev AA, Solyanik GI, Burlakova EB (1977) Mathematical model of periodic processes in membranes with application to cell cycle regulation. BioSystems 9:187–183.

    PubMed  CAS  Google Scholar 

  • Conrad M (1986) What is the use of chaos? In: Holden AV (ed) Chaos. Manchester University Press, Manchester, pp 3–14.

    Google Scholar 

  • Crabb R, Mackey MV, Rey AD (1996) Propagating fronts, chaos and multistability in a cell replication model. Chaos 6:477–492.

    PubMed  Google Scholar 

  • Davey HM, Davey CL, Woodward AM, Edmonds AN, Lee AW, Kell DB (1996) Oscillatory, stochastic and chaotic growth fluctuations in permittistatically controlled yeast cultures. BioSystems 39:43–61.

    PubMed  CAS  Google Scholar 

  • Dowse HB, Ringo JM (1987) Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J Biol Rhythms 2:65–76.

    PubMed  CAS  Google Scholar 

  • Duboc P, Marison L, von Stockar U (1996) Physiology of yeast during cell cycle oscillations. J Biotechnol 51:57–72.

    PubMed  CAS  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circulation clocks. Cell 96:271–290.

    PubMed  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chetrit P, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signalling and diurnal regulation. Plant Cell 15:1212–1226.

    PubMed  CAS  Google Scholar 

  • Edmunds LN Jr (1984) Cell Cycle Clocks. Marcell Dekker, New York.

    Google Scholar 

  • Edmunds LN Jr (1988) Cellular and molecular bases of biological clocks. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Emberley E, Wingreen NS (2006) Hourglass model for a protein-based circadian oscillator. Phys Rev Lett 96:038303.

    Google Scholar 

  • Engelberg J (1968) On deterministic origins of mitotic variability. J Theor Biol 20:249–251.

    PubMed  CAS  Google Scholar 

  • Fell DA (1997) Understanding the control of metabolism. Portland Press, London.

    Google Scholar 

  • Fell DA (2005) Enzymes, metabolites and fluxes. J Exp Bot 56:267–272.

    PubMed  CAS  Google Scholar 

  • Fuentes-Pardo B, Sáenz EM (1988) Action of deuterium oxide upon the ERG circadian rhythm in crayfish, Procambarus bouviei. Comp Biochem Physiol 90A:435–440.

    CAS  Google Scholar 

  • Fukuda H, Kodama J-I, Lai S (2004) Circadian rhythm formation in plant seedling: global synchronization and bifurcation as a coupled non-linear oscillator system. BioSystems 77:41–46.

    PubMed  Google Scholar 

  • Garfinkel D (1971) Simulation of the Krebs cycle and closely related metabolites in perfused rat liver. Comput Biomed Res 4:18–42.

    PubMed  CAS  Google Scholar 

  • Geest T, Steinmetz GC, Larter O, Olsen LF (1992) Period doubling bifurcations and chaos in an enzyme reaction. J Phys Chem 96:5678–5680.

    CAS  Google Scholar 

  • Gilbert DA (1974) The nature of the cell cycle and the control of cell proliferation. BioSystems 5:197–204.

    CAS  Google Scholar 

  • Gillette MU, Sejnowski TJ (2005) Biological clocks coordinately keep life on time. Science 309:1196–1198.

    PubMed  CAS  Google Scholar 

  • Goldbeter A, Gonze D, Houart G, Leloup JC, Halloy J, Dupont G (2001) From simple to complex oscillatory behaviour in metabolic and genetic control networks. Chaos 11:247–260.

    PubMed  CAS  Google Scholar 

  • Grasman J (1990) A deterministic model of the cell cycle. Bull Math Biol 52:535.

    PubMed  CAS  Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica 9D:189–208.

    Google Scholar 

  • Halberg F, Cornelissen G, Faraone P, Poeggeler B, Hardeland R, Katinas G, Schwartzkopff O, Otsuka K, Bakken EE (2005) Prokaryote and eukaryote unicellular chronomics. Biomed Pharmacother 59 suppl 1:S192–202.

    PubMed  Google Scholar 

  • Hammond KD, Savage N, Littlewood M (2000) Protein kinase C in erythroleukaemia cells: temporal variations of isoforms. Cell Biol Int 24:549–557.

    PubMed  CAS  Google Scholar 

  • Hardeland R, Coto-Mates A, Poeggler B (2003) Circadian rhythms, oxidative stress and antioxidant defense mechanisms. Chronobiol Int 20:921–962.

    PubMed  CAS  Google Scholar 

  • Harrison DEF (1973) Growth, oxygen and respiration. Crit Rev Microbiol 2:185–228.

    CAS  Google Scholar 

  • Hastings A, Hom CL, Ellner S, Godfray PHCJ (1993) Chaos in ecology: is nature a strange attractor? Annu Rev Ecol System 24:1–33.

    Google Scholar 

  • Hauck T, Schneider FW (1994) Chaos in a Farey sequence through period doubling in the peroxidase-oxidase reaction. J Phys Chem 98:2072–2077.

    CAS  Google Scholar 

  • Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. Eur J Biochem 42:89–95.

    PubMed  CAS  Google Scholar 

  • Higgins J (1963) Dynamics and control in cellular reactions. In: Chance B, Estabrook R, Williamson JR (eds) Control of energy metabolism. Academic Press, New York, pp 13–46.

    Google Scholar 

  • Ivleva NB, Bramlett MR, Lindahl PA, Golden SS (2005) LdpA: a component of the circadian clock senses redox state of the cell. EMBO J 24:1202–1210.

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns J (1973) The control of flux. In: Davies DD (ed) Rate control of biological processes. Cambridge University Press, Cambridge, pp 65–104.

    Google Scholar 

  • Kageyama H, Kondo T, Iwasaki H (2003) Circadian formation of clock protein complexes by KaiA, KaiB, KaiC and SasA in cyanobacteria. J Biol Chem 278:2388–2395.

    PubMed  CAS  Google Scholar 

  • Kamen M (1963) Primary processes in photosynthesis, p 4. Academic Press, New York.

    Google Scholar 

  • Klevecz RR (1976) Quantized generation times in mammalian cells as an expression of the cellular clock. Proc Natl Acad Sci USA 73:4012–4016.

    PubMed  CAS  Google Scholar 

  • Klevecz RR (1992) A precise circadian clock from chaotic cell cycle oscillations. In: Lloyd D, Rossi EL (eds) Ultradian rhythms in life processes. Springer, London, pp 41–70.

    Google Scholar 

  • Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101:1200–1205.

    PubMed  CAS  Google Scholar 

  • Kucho K-I, Okamoto K, Isuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp Strain PCC 6803. J Bacteriol 187:2190–2199.

    PubMed  CAS  Google Scholar 

  • Kuenzi MT, Fiechter M (1969) Changes in carbohydrate composition and trehalase activity during the budding cycle of yeast. Arch Mikrobiol 64:396–407.

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL (2000) Circadian rhythms: new functions for old clock genes. Trends Genet 16:135–142.

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL, Brody S (2004) Circadian rhythms in microorganisms: new complexities. Annu Rev Microbiol 58:489–519.

    PubMed  CAS  Google Scholar 

  • Langton CG (1991) Life at the edge of chaos. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life, II. Studies in the science of complexity. Addison-Wesley, Santa Fe, pp 41–91.

    Google Scholar 

  • Lillo C, Meyer C, Ruoff P (2001) The nitrate reductase system. The central clock dogma contra multiple oscillatory feedback loops. Plant Physiol 125:1554–1557.

    PubMed  CAS  Google Scholar 

  • Lloyd D (1992) Intracellular time keeping: epigenetic oscillations reveal the functions of an ultradian clock. In: Lloyd D, Rossi EL (eds) Ultradian rhythms in life processes. Springer, London, pp 5–22.

    Google Scholar 

  • Lloyd D (1994) A controlled chaotic attractor controls life. In: Gnaiger E, Gellerich FN, Wyss M (eds) What is controlling life? 50 years after Erwin Schrodinger's What is Life? Innsbruck University Press, Innsbruck, pp 77–80.

    Google Scholar 

  • Lloyd D (1998) Circadian and ultradian clock controlled rhythms in unicellular microorganisms. Adv Microb Physiol 39:292–339.

    Google Scholar 

  • Lloyd D (2003) Effects of uncoupling of mitochondrial energy conservation on the ultradian clock-driven oscillations in Saccharomyces cerevisiae continuous culture. Mitochondrion 3:139–146.

    PubMed  CAS  Google Scholar 

  • Lloyd D (2005) Systems dynamics of biology. J Appl Biomed 3:1–12.

    CAS  Google Scholar 

  • Lloyd D (2006) Ultradian rhythms and clocks in plants and yeast. Biol Rhythm Res 37:281–296.

    CAS  Google Scholar 

  • Lloyd D, Edwards SW (1984) Epigenetic oscillations during the cell cycles of lower eukaryotes are coupled to a clock: life's slow dance to the music of time. In: Edmunds L (ed) Cell clocks and cell cycles. Plenum Press, New York, pp 26–27.

    Google Scholar 

  • Lloyd D, Gilbert DA (1998) Temporal organization of the cell division cycle of eukaryotic microbes. Symp Soc Gen Microbiol 56:251–278.

    Google Scholar 

  • Lloyd D, Kippert F (1987) A temperature compensated ultradian clock explains temperature-dependent quantal cell cycle times. In: Bowler K, Fuller BJ (eds) Temperature and animal cells. Cambridge University Press, Cambridge, pp 135–155.

    Google Scholar 

  • Lloyd AL, Lloyd D (1993) Hypothesis: the central oscillator of the circadian clock is a controlled chaotic oscillator. BioSystems 29:77–85.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Lloyd AL (1994) A controlled chaotic attractor could provide a tuneable oscillator for circadian clocks. Biol Rhythm Res 25:235–240.

    Google Scholar 

  • Lloyd AL, Lloyd D (1995) Chaos: its significance and detection in biology. Biol Rhythm Res 26:233–252.

    Google Scholar 

  • Lloyd D, Murray DB (2000) Redox cycling of intracellular thiols: state variables for ultradian, cell division cycle and circadian cycles? In: Van den Driessche T et al. (eds) The redox state and circadian rhythms. Kluwer, Amsterdam, pp 85–94.

    Google Scholar 

  • Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30:373–377.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Murray DB (2006) The temporal architecture of eukaryotic ultradian rhythms in life processes. FEBS Lett 580:2830–2835.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Rossi ER (1992) Ultradian rhythms in life processes. Springer, London.

    Google Scholar 

  • Lloyd D, Stupfel M (1991) The occurrence and functions of ultradian rhythms. Biol Rev 66:275–299.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Volkov EI (1990) Quantized cell cycle times: interaction between a relaxation oscillator and ultradian clock pulses. BioSystems 23:305–310.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Volkov EI (1991) The ultradian clock: timekeeping for intracellular dynamics. In: Mosekilde E, Mosekilde L (eds) Complexity, chaos and biological evolution. Plenum Press, New York, pp 51–60.

    Google Scholar 

  • Lloyd D, Edwards SW, Fry JC (1982a) Temperature-compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanii. Proc Natl Acad Sci USA 79:3786–3788.

    Google Scholar 

  • Lloyd D, Poole RK, Edwards SW (1982b) The cell division cycle: temporal organization and control of cellular growth and reproduction. Academic Press, London.

    Google Scholar 

  • Lloyd D, Lloyd AL, Olsen LF (1992) The cell division cycle: a physiologically plausible dynamic model can exhibit chaotic solutions. BioSystems 27:17–24.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Aon MA, Cortassa S (2001) Why homeodynamics, not homeostasis? Sci World 1:133–145.

    CAS  Google Scholar 

  • Lloyd D, Salgado EJ, Turner MP, Murray DB (2002a) Respiratory oscillations in yeast: clock-driven mitochondrial cycles if energization. FEBS Lett 519:41–44.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Salgado EJ, Turner MP, Suller MTE, Murray DB (2002b) Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology 148:3715–3724.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Lemar KM, Salgado LEJ, Gould TM, Murray DB (2003) Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time; an hypothesis. FEMS Yeast Res 3:333–339.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Lloyd A, Olsen LF, Stolyarov MN, Volkov E, Murray DB (2004) Ultradian clock timekeeping: periodic, quasiperiodic and chaotic outputs. WSEAS Trans Biol Biomed 1:390–394.

    Google Scholar 

  • Mackey MC (1985) A deterministic cell cycle model with transition probability-like behaviour. In: Rensing L, Jaeger NI (eds) Temporal order. Springer, Berlin Heidelberg New York, pp 315–320.

    Google Scholar 

  • Mackey MC, Santavy M, Selepova P (1986) A mitotic oscillator with a strange attractor and distributions of cell cycle times. In: Othmer H (ed) Nonlinear oscillations in biology and chemistry. Springer, Berlin Heidelberg New York, pp 34–45.

    Google Scholar 

  • Markus M, Muller SC, Hess B (1985) Observations of entrainment, quasi-periodicity and chaos in glycolysing yeast extract and periodic glucose input. Ber Bunsenges Phys Chem 89:651–654.

    CAS  Google Scholar 

  • Martegani E, Porro D, Ranzi BM, Alberghina L (1990) Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast. Biotechnol Bioeng 36:453–459.

    PubMed  CAS  Google Scholar 

  • Matsuo T, Onai K, Okamoto K, Minagansa J, Ishura M (2006) Real-time monitoring of chloroplast gene expression: evidence for nuclear regulation of chloroplast circadian period. Mol Cell Biol 26:863–870.

    PubMed  CAS  Google Scholar 

  • Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85.

    PubMed  CAS  Google Scholar 

  • Mitsui K, Yaguchi S-I, Tsurugi K (1994) The GTS1 gene which contains a Gly-Thr repeat, affects the timing of budding and cell size of the yeast Saccharomyces cerevisiae. Mol Cell Biol 14:5569–5578.

    PubMed  CAS  Google Scholar 

  • Mittag M, Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. J Biol Chem 384:689–695.

    CAS  Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409.

    PubMed  CAS  Google Scholar 

  • Monod J (1950) La technique de culture continue: théorie et applications. Ann Inst Pasteur 79:390.

    CAS  Google Scholar 

  • Morré DJ, Ternes P, Morré DM (2002a) Cell enlargement of plant tissue explants oscillates with a temperature-compensated period of 24 min. In-Vitro Cell Dev Biol Plant 38:18–28.

    PubMed  Google Scholar 

  • Morré DJ, Church PJ, Pletcher T, Tang X, Wu LY, Morré DM (2002b) Biochemical basis for the biological clock. Biochemistry 41:11941–11945.

    PubMed  Google Scholar 

  • Münch T, Sonnleitner B, Fiechter A (1992) New insights into the synchronization mechanism with forced synchronous cultures of Saccharomyces cerevisiae. J Biotechnol 24:299–314.

    Google Scholar 

  • Murray DB (2004) On the temporal organisation of Saccharomyces cerevisiae. Curr Genomics 5:665–671.

    CAS  Google Scholar 

  • Murray DB, Lloyd D (2007) A tuneable attractor underlies yeast respiratory dynamics. BioSystems (in press) doi: 10–1016/biosystems. 2006.09.032.

    Google Scholar 

  • Murray DB, Englen FAA, Keulers M, Kuriyama H, Lloyd D (1998) NO+, but not NO inhibits respiratory oscillations in ethanol-grown continuous cultures of Saccharomyces cerevisiae. FEBS Lett 431:297–299.

    PubMed  CAS  Google Scholar 

  • Murray DB, Keulers M, Engelen F, Lloyd D, Kuriyama H (1999) Involvement of glutathione in the regulation of respiratory oscillations during continuous culture of S. cerevisiae. Microbiology 145:2739–2745.

    PubMed  CAS  Google Scholar 

  • Murray DB, Roller S, Kuriyama H, Lloyd D (2001) Clock control of ultradian respiratory oscillation found during yeast continuous culture. J Bacteriol 183:7253–7259.

    PubMed  CAS  Google Scholar 

  • Murray DB, Klevecz RR, Lloyd D (2003) Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Exp Cell Res 287:10–15.

    PubMed  CAS  Google Scholar 

  • Mustafin AT, Volkov EI (1977) On the distribution of cell generation times. BioSystems 15:111–126.

    Google Scholar 

  • Nakajima M, Imai K, Ito H, Mishawaka T, Mahayana Y, Iwasaki H, Osama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial Kai C phosphorylation in vitro. Science 308:414–415.

    PubMed  CAS  Google Scholar 

  • Nielsen K, Sorensen PG, Hymen F (1997) Chaos in glycolysis. J Theor Biol 186:303–306.

    PubMed  CAS  Google Scholar 

  • Noble D (2002) Modeling the heart – from genes to cells to the whole organ. Science 295:1678–1682.

    PubMed  CAS  Google Scholar 

  • Norel R, Agur Z (1991) A model for the adjustment of the mitotic clock by cyclin and MPF levels. Science 251:1076–1078.

    PubMed  CAS  Google Scholar 

  • Novak B, Pataki Z, Giliberto A, Tyson JJ (2001) Mathematical model of the cell cycle fission yeast. Chaos 11:277–286.

    PubMed  CAS  Google Scholar 

  • Olsen LF, Degn H (1977) Chaos in an enzymatic reaction. Nature 267:177–178.

    PubMed  CAS  Google Scholar 

  • Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199.

    PubMed  Google Scholar 

  • Paetkau V, Edwards R, Illner R (2006) A model for generating circadian rhythm by coupling ultradian oscillators. Theor Biol Med Mod 3:12.

    Google Scholar 

  • Parulekar SJ, Semiones GB, Rolf MJ, Livense JC, Lim HC (1986) Induction and elimination of oscillations in continuous cultures of yeast (Saccharomyces cerevisiae). Biotechnol Bioeng 28:700–710.

    PubMed  CAS  Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, Oxford.

    Google Scholar 

  • Porro D, Martegani E, Razni BM, Alberghina L (1988) Oscillations in continuous cultures of budding yeast a segregated parameter analysis. Biotechnol Bioeng 32:411–417.

    PubMed  CAS  Google Scholar 

  • Prytz G (2001) A biophysical study of oscillatory water regulation in plants. Measurement and models. PhD Thesis, Norwegian University of Science and Technology, Trondheim.

    Google Scholar 

  • Pyragas K (1992) Continuous control of chaos by self-controlling feed-back. Phys Lett 170:421–428.

    Google Scholar 

  • Pyragas K (2002) Analytical properties and optimization of time-delayed feedback control. Phys Rev E Stat Nonlin Soft Matter Phys 66:026207.

    PubMed  CAS  Google Scholar 

  • Pyragiene T, Pyragas K (2005) Delayed feedback control of forced self-sustained oscillations. Phys Rev E Stat Nonlin Soft Matter Phys 72:026203.

    PubMed  CAS  Google Scholar 

  • Rees P, Spencer PS, Pierce I, Sivaprakasam S, Shore KA (2003) Anticipated chaos in a non-symmetric coupled external-cavity laser system. Phys Rev A68:033818.

    Google Scholar 

  • Restrepo JG, Ott E, Hunt BR (2005) Onset of synchronization in large networks of coupled oscillators. Phys Rev E Stat Nonlin Soft Matter Phys 71:036151.

    PubMed  Google Scholar 

  • Romond PC, Rustici M, Gonze D, Goldbeter A (1999) Alternating oscillations and chaos in a model of two coupled biochemical oscillators driving successive phases of the cell cycle. Ann N Y Acad Sci 879:180–193.

    PubMed  CAS  Google Scholar 

  • Roussel MR, Lloyd D (2007) Observation of a chaotic multioscillatory metabolic attractor by real-time monitoring of yeast continuous centre. FEBS J doi: 10.1111/j.1172–4658.0561.x.

    Google Scholar 

  • Salgado F, Murray DB, Lloyd (2002) Some antidepressant agents (Li+, monoamine oxidase type A inhibitors) perturb the ultradian clock in S. cerevisiae. Biol Rhythm Res 33:351–361.

    CAS  Google Scholar 

  • Satroutdinov AD, Kuriyama H, Kobayashi H (1992) Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol Lett 77:261–267.

    PubMed  CAS  Google Scholar 

  • Schibler U (2005) The daily rhythms of genes, cells and organs. Biological clocks and circadian timing in cells. EMBO Rep 6(S1):S9–13.

    PubMed  CAS  Google Scholar 

  • Schibler U, Naef F (2005) Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol 17:223–229.

    PubMed  CAS  Google Scholar 

  • Schneider ED, Sagan D (2005) Into the cool. Energy flow thermodynamics and life. University Press, Chicago.

    Google Scholar 

  • Searcy DG (2003) Metabolic integration during the evolutionary origin of mitochondria. Cell Res 4:229–234.

    Google Scholar 

  • Sel'kov EE (1970): Two alternative self-oscillating stationary states in thiol metabolism – two alternative types of cell division normal and malignant ones. Biophysika 15:1065–1073.

    Google Scholar 

  • Sheppard JD, Dawson PSS (1999) Cell synchrony and periodic behaviour in yeast populations. Can J Chem Eng 77:892–902.

    Google Scholar 

  • Sohn H-Y, Kuriyama H (2001) Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: H2S, a population synchronizer is produced by sulphite reductase. Yeast 18:125–135.

    PubMed  CAS  Google Scholar 

  • Sohn H-Y, Murray DB, Kuriyama H (2000) Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony. Yeast 16:1185–1190.

    PubMed  CAS  Google Scholar 

  • Strässle C, Sonnleitner B, Fiechter A (1988) A predictive model for the spontaneous synchronization of yeast (Saccharomyces cerevisiae) grown in continuous culture. J Biotechnol 7:299–318.

    Google Scholar 

  • Sweeney BM (1982) Interaction of the circadian cycle with the cell cycle in Pyrocystis fusiformis. Plant Physiol 70:272–276.

    PubMed  Google Scholar 

  • Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231.

    PubMed  CAS  Google Scholar 

  • Wagner V, Gessner G, Mittag M (2005) Functional proteomics: a promising approach to find novel components of the circadian system. Chronobiol Int 22:403–415.

    PubMed  CAS  Google Scholar 

  • Weber G (1990) Whither biophysics? Annu Rev Biophys Chem 19:1–6.

    CAS  Google Scholar 

  • Wicken J (1987) Evolution, thermodynamics and information: extending the Darwin program. Oxford University Press, New York.

    Google Scholar 

  • Wiener N (1961) Cybernetics, 2nd edn. MIT Press, Cambridge, MA.

    Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a times series. Physica 16D:285–318.

    CAS  Google Scholar 

  • Yang TH, Hunt BR, Ott E (2000) Optimal periodic orbits of continuous time chaotic systems. Phys Rev E Stat Phys Plasmas Fluids Rel Inter Topics 62:1950–1959.

    CAS  Google Scholar 

  • Yates FE (1992a) Fractal applications in biology. Scaling in biochemical networks. Methods Enzymol 210:636–675.

    PubMed  CAS  Google Scholar 

  • Yates FE (1992b) Outline of a physical theory of physiological systems. J Physiol Pharmacol 60:217–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lloyd, D. (2007). Rhythms, Clocks and Deterministic Chaos in Unicellular Organisms. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_13

Download citation

Publish with us

Policies and ethics