Skip to main content

Molecular Aspects of the Arabidopsis Circadian Clock

  • Chapter
Rhythms in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293: 880–883.

    PubMed  Google Scholar 

  • Alabadí D, Yanovsky MJ, Más P, Harmer SL, Kay SA (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12:757–761.

    PubMed  Google Scholar 

  • Ang LH, Deng XW (1994) Regulatory hierarchy of photomorphogenic loci-allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6:613–628.

    PubMed  CAS  Google Scholar 

  • Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Adam E, Fejes E, Schafer E, Nagy F (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–1445.

    PubMed  CAS  Google Scholar 

  • Christie JM, Briggs WR (2001) Blue light sensing in higher plants. J Biol Chem 276:11457–11460.

    PubMed  CAS  Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315.

    PubMed  CAS  Google Scholar 

  • Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101:3292–3297.

    PubMed  CAS  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. Murray, London.

    Google Scholar 

  • del Pozo JC, Estelle M (2000) F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol Biol 44:123–128.

    PubMed  Google Scholar 

  • de Mairan J (1729) Observation botanique. Histoire de l'Académie Royale des Sciences, Paris, pp 35–36.

    Google Scholar 

  • Devlin PF (2002) Signs of the time: environmental input to the circadian clock. J Exp Bot 53:1535–1550.

    PubMed  CAS  Google Scholar 

  • Devlin PF, Kay SA (1999) Cryptochromes – bringing the blues to circadian rhythms. Trends Cell Biol 9:295–298.

    PubMed  CAS  Google Scholar 

  • Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12:2499–2509.

    PubMed  CAS  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77.

    PubMed  CAS  Google Scholar 

  • Duek PD, Fankhauser C (2003) HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling. Plant J 34:827–836.

    PubMed  CAS  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290.

    PubMed  CAS  Google Scholar 

  • Eriksson ME, Hanano S, Southern MM, Hall A, Millar AJ (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218:159–162.

    PubMed  CAS  Google Scholar 

  • Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47–54.

    PubMed  Google Scholar 

  • Folta KM (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol 135:1407–1416.

    PubMed  CAS  Google Scholar 

  • Foster R, Kreitzman L (2005) Rhythms of life. The biological clocks that control the daily lives of every living thing. Profile Books, London.

    Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688.

    PubMed  CAS  Google Scholar 

  • Fujimori T, Yamashino T, Kato T, Mizuno T (2004) Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol 45:1078–1086.

    PubMed  CAS  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584.

    PubMed  CAS  Google Scholar 

  • Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung SB, Halliday KJ, Amasino RM, Millar AJ (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15:2719–2729.

    PubMed  CAS  Google Scholar 

  • Han LQ, Mason M, Risseeuw EP, Crosby WL, Somers DE (2004) Formation of an SCFZTL complex is required for proper regulation of circadian timing. Plant J 40:291–301.

    PubMed  CAS  Google Scholar 

  • Hanano S, Davis SJ (2005) Pseudo-response regulator genes “tell” the time of day: multiple feedbacks in the circadian system of higher plants. In: Hall AJW, McWatters HG (eds) Endogenous plant rhythms. Blackwell, Oxford, pp 25–26.

    Google Scholar 

  • Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17:1926–1940.

    PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch LB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113.

    PubMed  CAS  Google Scholar 

  • Harms E, Kivimae S, Young MW, Saez L (2004) Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 19:361–373.

    PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19.

    PubMed  CAS  Google Scholar 

  • Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA 102:10387–10392.

    PubMed  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747.

    PubMed  CAS  Google Scholar 

  • Hennessey TL, Field CB (1992) Evidence of multiple circadian oscillators in bean plants. J Biol Rhythms 7:105–113.

    PubMed  CAS  Google Scholar 

  • Hicks KA, Albertson TM, Wagner DR (2001) EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13:1281–1292.

    PubMed  CAS  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133:1605–1616.

    PubMed  CAS  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450.

    PubMed  CAS  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:11673–11673.

    CAS  Google Scholar 

  • Imaizumi T, Tran HG, Schultz TF, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–306.

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Nishiwaki T, Kitayama Y, Nakajima M, Kondo T (2002) KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. Proc Natl Acad Sci USA 99:15788–15793.

    PubMed  CAS  Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and PHYB. Nature 410:487–490.

    PubMed  CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141.

    PubMed  CAS  Google Scholar 

  • Karniol B, Yahalom A, Kwok S, Tsuge T, Matsui M, Deng XW, Chamovitz DA (1998) The Arabidopsis homologue of an ELF3 complex subunit associates with the COP9 complex. FEBS Lett 439:173–179.

    PubMed  CAS  Google Scholar 

  • Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in plants. Kluwer, Dordrecht.

    Google Scholar 

  • Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44:300–313.

    PubMed  CAS  Google Scholar 

  • Kim JY, Song HR, Taylor BL, Carré IA (2003) Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J 22:935–944.

    PubMed  CAS  Google Scholar 

  • Kim WY, Geng RS, Somers DE (2003) Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci USA 100:4933–4938.

    PubMed  CAS  Google Scholar 

  • Kim WY, Hicks KA, Somers DE (2005) Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139:1557–1569.

    PubMed  CAS  Google Scholar 

  • Kleine T, Lockhart P, Barschauer A (2003) An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J 35:92–103.

    Google Scholar 

  • Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141.

    PubMed  CAS  Google Scholar 

  • Lillo C, Meyer C, Ruoff P (2001) The nitrate reductase circadian system. The central clock dogma contra multiple oscillatory feedback loops. Plant Physiol 125:1554–1557.

    PubMed  CAS  Google Scholar 

  • Lin CT, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496.

    PubMed  CAS  Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–485.

    PubMed  CAS  Google Scholar 

  • Liscum E, Hodgson DW, Campbell TJ (2003) Blue light signalling through the cryptochromes and phototropins. So that's what the blues is all about. Plant Physiol 133:1429–1436.

    PubMed  CAS  Google Scholar 

  • Luce GG (1971) Biological rhythms in human and animal physiology. Dover, New York.

    Google Scholar 

  • Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: 1. Characterization with APRR1-overexpressing plants. Plant Cell Physiol 43:58–69.

    PubMed  CAS  Google Scholar 

  • Martínez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–863.

    PubMed  Google Scholar 

  • Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–211.

    PubMed  Google Scholar 

  • Más P, Alabadí D, Yanovsky MJ, Oyama T, Kay SA (2003a) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15:223–236.

    PubMed  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003b) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570.

    PubMed  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012.

    PubMed  CAS  Google Scholar 

  • McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Physiol Plant Mol Biol 52:139–162.

    PubMed  CAS  Google Scholar 

  • McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720.

    PubMed  CAS  Google Scholar 

  • McWatters HG, Roden LC, Staiger D (2001) Picking out parallels: plant circadian clocks in context. Philos Trans R Soc Lond Series B-Biol Sci 356:1735–1743.

    CAS  Google Scholar 

  • Meyer P, Saez L, Young MW (2006) PER-TIM interactions in Drosophilia cells: an interval timer for the circadian clock. Science 311:226–229.

    PubMed  CAS  Google Scholar 

  • Michael TP, McClung CR (2002) Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol 130:627–638.

    PubMed  CAS  Google Scholar 

  • Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol 132:629–639.

    PubMed  CAS  Google Scholar 

  • Michael TP, Salomé PA, McClung CR (2003) Two Arabidopsis circadian oscillators can be distinguished by differential temperature sensitivity. Proc Natl Acad Sci USA 100:6878–6883.

    PubMed  CAS  Google Scholar 

  • Millar AJ (1998) Molecular intrigue between phototransduction and the circadian clock. Ann Bot 81:581–587.

    CAS  Google Scholar 

  • Millar AJ (2003) Suite of photoreceptors entrains the plant circadian clock. J Biol Rhythms 18:217–226.

    PubMed  CAS  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496.

    PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Chua NH, Kay SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087.

    PubMed  CAS  Google Scholar 

  • Millar AJ, Carré IA, Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267:1161–1163.

    PubMed  CAS  Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2:629–641.

    PubMed  CAS  Google Scholar 

  • Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3 acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci USA 101:16091–16098.

    PubMed  CAS  Google Scholar 

  • Nagy F, Schäfer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol 53:329–355.

    PubMed  CAS  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698.

    PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–784.

    PubMed  CAS  Google Scholar 

  • Oh K, Kim J, Park E, Kim J-I, Kang C, Choi G (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16:3045–3058.

    PubMed  CAS  Google Scholar 

  • Onai K, Ishiura M (2005) PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells 10:963–972.

    PubMed  CAS  Google Scholar 

  • Osterlund MT, Deng XW (1998) Multiple photoreceptors mediate the light-induced reduction of CUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J 16:201–208.

    PubMed  CAS  Google Scholar 

  • Osterlund MT, Hardtke S, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466.

    PubMed  CAS  Google Scholar 

  • Panda S, Poirier GG, Kay SA (2002) tej defines a role for poly(ADP-ribosyl) ation in establishing period length of the Arabidopsis circadian oscillator. Dev Cell 3:51–61.

    PubMed  CAS  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582.

    PubMed  CAS  Google Scholar 

  • Park E, Kim J, Lee Y, Shin J, Oh E, Chung WI, Liu JR, Choi G (2004) Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol 45: 968–975.

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1954) On the temperature independence in the clock systems controlling emergence time in Drosophila. Proc Natl Acad Sci USA 30:1018–1029.

    Google Scholar 

  • Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188.

    PubMed  CAS  Google Scholar 

  • Roenneberg T, Foster RG (1997) Twilight times: light and the circadian system. Photochem Photobiol 66:549–561.

    PubMed  CAS  Google Scholar 

  • Roenneberg T, Merrow M (2000) Circadian clocks: Omnes viae Romam ducunt. Curr Biol 10:R742–R745.

    PubMed  CAS  Google Scholar 

  • Sai J, Johnson CH (1999) Different circadian oscillators control Ca2+ fluxes and LHCB gene expression. Proc Natl Acad Sci USA 96:11659–11663.

    PubMed  CAS  Google Scholar 

  • Salomé PA, McClung CR (2004) The Arabidopsis thaliana clock. J Biol Rhythms 19:425–435.

    PubMed  Google Scholar 

  • Salomé PA, McClung CR (2005a) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17:791–803.

    PubMed  Google Scholar 

  • Salomé PA, McClung CR (2005b) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ 28:21–38.

    Google Scholar 

  • Salomé PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR (2002) The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. Plant Physiol 129:1674–1685.

    PubMed  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426:680–683.

    PubMed  CAS  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229.

    PubMed  CAS  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123.

    PubMed  CAS  Google Scholar 

  • Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670.

    PubMed  CAS  Google Scholar 

  • Schwechheimer C, Deng XW (2001) COP9 signalosome revisited: a novel mediator of protein degradation. Trends Cell Biol 11:420–426.

    PubMed  CAS  Google Scholar 

  • Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999.

    PubMed  CAS  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:8129–8133.

    Google Scholar 

  • Somers DE (2005) Entrainment of the circadian clock. In: Hall AJW, McWatters HG (eds) Endogenous plant rhythms. Blackwell, Oxford, pp 85–106.

    Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998a) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490.

    PubMed  CAS  Google Scholar 

  • Somers DE, Webb AAR, Pearson M, Kay SA (1998b) The short-period mutant, toc1–1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125:485–494.

    PubMed  CAS  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329.

    PubMed  CAS  Google Scholar 

  • Somers DE, Kim WY, Geng RS (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782.

    PubMed  CAS  Google Scholar 

  • Song HR, Carré IA (2005) DET1 regulates the proteasomal degradation of LHY, a component of the Arabidopsis circadian clock. Plant Mol Biol 57:761–771.

    PubMed  CAS  Google Scholar 

  • Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C (2003) The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes Dev 17:256–268.

    PubMed  CAS  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771.

    PubMed  CAS  Google Scholar 

  • Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM (1998) Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci USA 95:11020–11025.

    PubMed  CAS  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98:9437–9442.

    PubMed  CAS  Google Scholar 

  • Thain SC, Murtas G, Lynn JR, McGrath RB, Millar AJ (2002) The circadian clock that controls gene expression in Arabidopsis is tissue specific. Plant Physiol 130:102–110.

    PubMed  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770.

    PubMed  CAS  Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217.

    PubMed  CAS  Google Scholar 

  • Webb AAR (1998) Stomatal rhythms. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS, Oxford, pp 79–79.

    Google Scholar 

  • Whitelam GC, Devlin PF (1998) Light signalling in Arabidopsis. Plant Physiol Biochem 36:125–133.

    CAS  Google Scholar 

  • Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, Mizuno T (2003) A link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 44:619–629.

    CAS  Google Scholar 

  • Yanagawa Y, Sullivan JA, Komatsu S, Gusmaroli G, Suzuki G, Yin JN, Ishibashi T, Saijo Y, Rubio V, Kimura S, Wang J, Deng XW (2004) Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev 18:2172–2181.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cuin, T.A. (2007). Molecular Aspects of the Arabidopsis Circadian Clock. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_12

Download citation

Publish with us

Policies and ethics